Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Atomistic basis for the plastic yield criterion of metallic glass

Abstract

Because of their disordered atomic structure, amorphous metals (termed metallic glasses) have fundamentally different deformation mechanisms compared with polycrystalline metals. These different mechanisms give metallic glasses high strength, but the extent to which they affect other macroscopic deformation properties is uncertain. For example, the nature of the plastic-yield criterion is a point of contention, with some studies reporting yield behaviour roughly in line with that of polycrystalline metals, and others indicating strong fundamental differences. In particular, it is unclear whether pressure- or normal stress-dependence needs to be included in the plastic-yield criterion of metallic glasses, and how such a dependence could arise from their disordered structure1,2,3,4. In this work we provide an atomic-level explanation for pressure-dependent yield in amorphous metals, based on an elementary unit of deformation. This simple model compares favourably with new atomistic simulations of metallic glasses, as well as existing experimental data.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Shear transformation zones in metallic glasses.
Figure 2: Fundamental yield criterion for an elementary shear transformation zone.
Figure 3: Yield surface of a metallic glass.

Similar content being viewed by others

References

  1. Lewandowski, J.J. & Lowhaphandu, P. Effects of hydrostatic pressure on the flow and fracture of a bulk amorphous metal. Phil. Mag. A 82, 3427–3441 ( 2002).

    Article  CAS  Google Scholar 

  2. Zhang, Z.F., Eckert, J. & Schultz, L. Difference in compressive and tensile fracture mechanisms of Zr59Cu20Al10Ni8Ti3 bulk metallic glasses. Acta Mater. 51, 1167–1179 ( 2003).

    Article  CAS  Google Scholar 

  3. Flores, K.M. & Dauskardt, R.H. Mean stress effects on flow localization and failure in a bulk metallic glass. Acta Mater. 49, 2527–2537 ( 2001).

    Article  CAS  Google Scholar 

  4. Lowhaphandu, P., Montgomery, S.L. & Lewandowski, J.J. Effects of superimposed hydrostatic pressure on flow and fracture of a Zr-Ti-Ni-Cu-Be bulk amorphous alloy. Scripta Mater. 41, 19–24 ( 1999).

    Article  CAS  Google Scholar 

  5. Bulatov, V.V., Richmond, O. & Glazov, M.V. An atomistic dislocation mechanism of pressure-dependent plastic flow in aluminum. Acta Mater. 47, 3507–3514 ( 1999).

    Article  CAS  Google Scholar 

  6. Courtney, T.H. Mechanical Behaviour of Materials (McGraw-Hill, New York, 1990).

    Google Scholar 

  7. Mukai, T., Nieh, T.G., Kawamura, Y., Inoue, A. & Higashi, K. Effect of strain rate on compressive behaviour of a Pd40Ni40P20 bulk metallic glass. Intermetall. 10, 1071–1077 ( 2002).

    Article  CAS  Google Scholar 

  8. Vaidyanathan, R., Dao, M., Ravichandran, G. & Suresh, S. Study of mechanical deformation in bulk metallic glass through instrumented indentation. Acta Mater. 49, 3781–3789 ( 2001).

    Article  CAS  Google Scholar 

  9. Argon, A.S. Plastic deformation in metallic glasses. Acta Metall. 27, 47–58 ( 1979).

    Article  CAS  Google Scholar 

  10. Spaepen, F. A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metall. 25, 407–415 ( 1977).

    Article  CAS  Google Scholar 

  11. Eastgate, L.O., Langer, J.S. & Pechenik, L. Dynamics of large-scale plastic deformation and the necking instability in amorphous solids. Phys. Rev. Lett. 90, 045506 ( 2003).

    Article  CAS  Google Scholar 

  12. Kim, J.-J., Choi, Y., Suresh, S. & Argon, A.S. Nanocrystallization during nanoindentation of a bulk amorphous metal alloy at room temperature. Science 295, 654–657 ( 2002).

    CAS  Google Scholar 

  13. Born, M. & Huang, K. Dynamical Theory of Crystal Lattices (Claredon, Oxford, UK, 1954).

    Google Scholar 

  14. Kobayashi, S., Maeda, K. & Takeuchi, S. Computer simulation of deformation of amorphous Cu57Zr43 . Acta Metall. 28, 1641–1652 ( 1980).

    Article  CAS  Google Scholar 

  15. Falk, M.L. & Langer, J.S. Dynamics of viscoplastic deformation in amorphous solids. Phys. Rev. E 57, 7192–7205 ( 1998).

    Article  CAS  Google Scholar 

  16. Falk, M.L. Molecular-dynamics study of ductile and brittle fracture in model noncrystalline solids. Phys. Rev. B 60, 7062–7070 ( 1999).

    Article  CAS  Google Scholar 

  17. Argon, A.S. & Kuo, H.Y. Plastic flow in a disordered bubble raft (an analog of a metallic glass). Mater. Sci. Eng. 39, 101–109 ( 1979).

    Article  Google Scholar 

  18. Lund, A.C. & Schuh, C.A. Atomistic simulation of strain-induced amorphization. Appl. Phys. Lett. 82, 2017–2019 ( 2003).

    Article  CAS  Google Scholar 

  19. Lacks, D.J. Energy landscape and the non-newtonian viscosity of liquids and glasses. Phys. Rev. Lett. 87, 225502 ( 2001).

    Article  CAS  Google Scholar 

  20. Gagnon, G., Patton, J. & Lacks, D.J. Energy landscape view of fracture and avalanches in disordered materials. Phys. Rev. E 64, 051508 ( 2001).

    Article  CAS  Google Scholar 

  21. Schiotz, J., Vegge, T., Tolla, F.D.D. & Jacobsen, K.W. Atomic-scale simulations of the mechanical deformation of nanocrystalline metals. Phys. Rev. B 60, 11971–11983 ( 1999).

    Article  CAS  Google Scholar 

  22. Rottler, J. & Robbins, M.O. Yield conditions for deformation of amorphous polymer glasses. Phys. Rev. E 64, 051801 ( 2001).

    Article  CAS  Google Scholar 

  23. Donovan, P.E. A yield criterion for Pd40Ni40P20 metallic glass. Acta Mater. 37, 445–456 ( 1989).

    Article  CAS  Google Scholar 

  24. Fan, C., Ott, R.T. & Hufnagel, T.C. Metallic glass matrix composite with precipitated ductile reinforcement. Appl. Phys. Lett. 81, 1020–1022 ( 2002).

    Article  CAS  Google Scholar 

  25. Hays, C.C., Kim, C.P. & Johnson, W.L. Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glass containing in situ formed ductile phase dendrite dispersions. Phys. Rev. Lett. 84, 2901–2904 ( 2000).

    Article  CAS  Google Scholar 

  26. Nieh, T.G. & Wadsworth, J. Hall-Petch relation in nanocrystalline solids. Scripta Metall. Mater. 25, 955–958 ( 1991).

    Article  CAS  Google Scholar 

  27. Yamakov, V., Wolf, D., Phillpot, S.R., Mukherjee, A.K. & Gleiter, H. Dislocation processes in the deformation of nanocrystalline aluminium by molecular-dynamics simulation. Nature Mater. 1, 1–4 ( 2002).

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Defense University Research Initiative on NanoTechnology (DURINT) on damage and failure resistant nanostructured materials, which is funded at the Massachusetts Institute of Technology by the US Office of Naval Research, Grant No. N00014-01-1-0808.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher A. Schuh.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schuh, C., Lund, A. Atomistic basis for the plastic yield criterion of metallic glass. Nature Mater 2, 449–452 (2003). https://doi.org/10.1038/nmat918

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat918

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing