Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Faster magnetic walls in rough wires

Abstract

In some magnetic devices that have been proposed, the information is transmitted along a magnetic wire of submicrometre width by domain wall (DW) motion1,2. The speed of the device is obviously linked to the DW velocity, and measured values up to 1 km s−1 have been reported in moderate fields3. Although such velocities were already reached in orthoferrite crystal films with a high anisotropy4, the surprise came from their observation in the low-anisotropy permalloy. We have studied, by numerical simulation, the DW propagation in such samples, and observed a very counter-intuitive behaviour. For perfect samples (no edge roughness), the calculated velocity increased with field up to a threshold, beyond which it abruptly decreased — a well-known phenomenon5. However, for rough strip edges, the velocity breakdown was found to be suppressed. We explain this phenomenon, and propose that roughness should rather be engineered than avoided when fabricating nanostructures for DW propagation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Simulated time-resolved domain wall (DW) motion in a permalloy wire.
Figure 2: Wall velocity versus field (same parameters as in Fig. 1).
Figure 3: Comparison of experimental values (the two data sets of Ref. 3) and numerical simulations (α = 0.02, D = 0 and 20 nm).

Similar content being viewed by others

References

  1. Allwood, D.A. et al. Submicrometer ferromagnetic NOT gate and shift register. Science 296, 2003–2006 ( 2002).

    Article  CAS  Google Scholar 

  2. Shiratori, T., Fujii, E., Miyaoka, Y. & Hozumi, Y. High-density magneto-optical recording with domain wall displacement detection. J. Magn. Soc. Jpn 22-S2, 47–50 ( 1998).

    Google Scholar 

  3. Atkinson, D. et al. Magnetic domain wall dynamics in a submicrometre ferromagnetic structure. Nature Mater. 2, 85–87 ( 2003).

    Article  CAS  Google Scholar 

  4. Malozemoff, A.P. & Slonczewski, J.C. Magnetic Domain Walls in Bubble Materials (Academic, New York, 1979).

    Google Scholar 

  5. Schryer, N.L. & Walker, L.R. The motion of 180° domain walls in uniform dc magnetic fields. J. Appl. Phys. 45, 5406–5421 ( 1974).

    Article  CAS  Google Scholar 

  6. Thiaville, A., Garcia, J.M. & Miltat, J. Domain wall dynamics in nanowires. J. Magn. Magn. Mater. 242245, 1061–1063 ( 2002).

    Article  Google Scholar 

  7. Nakatani, Y., Hayashi, N., Ono, T. & Miyajima, H. Computer simulation of domain wall motion in a magnetic strip line with submicron width. IEEE Trans. Magn. 37, 2129–2131 ( 2001).

    Article  Google Scholar 

  8. McMichael, R.D. & Donahue, M.J. Head to head domain wall structures in thin magnetic strips. IEEE Trans. Magn. 33, 4167–4169 ( 1997).

    Article  Google Scholar 

  9. Hubert, A. & Schäfer, R. Magnetic domains (Springer, Berlin, 1998).

    Google Scholar 

  10. Thiele, A. Steady-state motion of magnetic domains. Phys. Rev. Lett. 30, 230–233 ( 1973).

    Article  Google Scholar 

  11. Feldtkeller, E. Mikromagnetisch stetige und unstetige Magnetisierungskonfigurationen. Z. Angew. Phys. 19, 530–536 ( 1965).

    Google Scholar 

  12. Thiele, A.A. & Asselin, P. Model for dynamic domain wall coercivity. J. Appl. Phys. 55, 2584–2586 ( 1984).

    Article  CAS  Google Scholar 

  13. Bouzidi, D. & Suhl, H. Motion of a Bloch domain wall. Phys. Rev. Lett. 65, 2587–2590 ( 1990).

    Article  CAS  Google Scholar 

  14. Schrefl, T., Fidler, J., Kirk, K.J. & Chapman, J.N. Simulation of magnetization reversal in polycrystalline patterned Co elements. J. Appl. Phys. 85, 6169–6171 ( 1999).

    Article  CAS  Google Scholar 

  15. Hadjipanayis, G.C. Nanophase hard magnets. J. Magn. Magn. Mater. 200, 373–391 ( 2000).

    Article  Google Scholar 

  16. Ono, T. et al. Propagation of a magnetic domain wall in a submicrometer magnetic wire. Science 284, 468–470 ( 1999).

    Article  CAS  Google Scholar 

  17. Gadbois, J. & Zhu, J.-G. Effect of edge roughness in nano-scale magnetic bar switching. IEEE Trans. Magn. 31, 3802–3804 ( 1995).

    Article  Google Scholar 

  18. Cowburn, R.P., Koltsov, D.K., Adeyeye, A.O. & Welland M.E. Lateral interface anisotropy in nanomagnets. J. Appl. Phys. 87, 7067–7069 ( 2000).

    Article  CAS  Google Scholar 

  19. Nakatani, Y., Uesaka, Y. & Hayashi, N. Direct solution of the Landau-Lifshitz-Gilbert equation for micromagnetics. Jpn J. Appl. Phys. 28, 2485–2507 ( 1989).

    Article  CAS  Google Scholar 

  20. Fukushima, H., Nakatani, Y. & Hayashi, N. Volume average demagnetizing tensor of rectangular prisms. IEEE Trans. Magn. 34, 193–198 ( 1998).

    Article  Google Scholar 

  21. Hayashi, N., Saito, K. & Nakatani, Y. Calculation of demagnetizing field distribution based on fast Fourier transform of convolution. Jpn J. Appl. Phys. 35, 6065–6073 ( 1996).

    Article  CAS  Google Scholar 

  22. Donahue, M.J. & Porter, D.G. OOMMF User's Guide, Version 1.0. Interagency Report NISTIR 6376 (National Institute of Standards and Technology, Gaithersburg, 1999).

    Book  Google Scholar 

  23. Press, W.H., Teukolsky, S.A., Vetterling, W.T. & Flannery, B.P. Numerical Recipes in FORTRAN (Cambridge Univ. Press, New York, 1992).

    Google Scholar 

Download references

Acknowledgements

We thank D. Atkinson, G. Xiong and R. P. Cowburn for communicating their results before publication of Ref. 3. The stay of Y.N. at Orsay was supported by a grant from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Thiaville.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakatani, Y., Thiaville, A. & Miltat, J. Faster magnetic walls in rough wires. Nature Mater 2, 521–523 (2003). https://doi.org/10.1038/nmat931

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat931

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing