Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Nanophase separation and hindered glass transition in side-chain polymers

Abstract

Nanophase separation on length scales of 1–5 nanometres has been reported previously for small-molecule liquids1, metallic glasses and also for several semicrystalline, liquid-crystalline2,3 and amorphous4 polymers. Here we show that nanophase separation of incompatible main and side-chain parts is a general phenomenon in amorphous side-chain polymers with long alkyl groups. We conclude from X-ray scattering and relaxation spectroscopy data for higher poly(n-alkyl acrylates) (PnAA) and poly(n-alkyl methacrylates) (PnAMA) that alkyl groups of different monomeric units aggregate in the melt and form self-assembled alkyl nanodomains with a typical size of 0.5–2 nm. A comparison with data for other polymer series having alkyl groups reveals that important structural and dynamic aspects are main-chain independent. A polyethylene-like glass transition within the alkyl nanodomains is observed and discussed in the context of a hindered glass transition in self-assembled confinements. This is an interesting link between central questions in glass-transition research and structural aspects in nanophase-separated materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural data for polymer series with long alkyl groups in the side chain.
Figure 2: Relaxation dynamics of polymer series with long alkyl groups in the side chain.

Similar content being viewed by others

References

  1. Chen, W. & Wunderlich, B. Nanophase separation of small and large molecules. Macromol. Chem. Phys. 200, 283–311 ( 1999).

    Article  CAS  Google Scholar 

  2. Ringsdorf, H. & Tschirner, P. Synthesis, structure, and phase behaviour of liquid-crystalline rigid-rod polyesters and polyamides with disc-like mesogens in the main chain. Makromol. Chem. 188, 1431–1445 ( 1987).

    Article  CAS  Google Scholar 

  3. Chen, W., Pyda, M., Habenschuss, A., Londono, J.D. & Wunderlich, B. Nanophase separation and crystallization in PEIM-12 poly(4,4'-phthaloimidobenzoyl-dodecamethyleneoxycarbonyl). Polym. Adv. Technol. 8, 747–760 ( 1997).

    Article  CAS  Google Scholar 

  4. Beiner, M., Schröter, K., Hempel, E., Reissig, S. & Donth, E. Multiple glass transition and nanophase separation in poly(n-alkyl methacrylate) homopolymers. Macromolecules 32, 6278–6282 ( 1999).

    Article  CAS  Google Scholar 

  5. Hamley, I.W. The Physics of Block Copolymers (Oxford Univ. Press, Oxford, 1998).

    Google Scholar 

  6. Fredrickson, G.H. & Bates, F.S. Dynamics of block copolymers: Theory and experiment. Annu. Rev. Mater. Sci. 26, 501–550 ( 1996).

    Article  CAS  Google Scholar 

  7. Cowie, J.M.G., Haq, Z., McEwen, I.J. & Velickovic, J. Poly(alkyl itaconates): Observation of dual glass transitions and crystallinity in the dialkyl ester series di-heptyl to di-eicosyl. Polymer 22, 327–332 ( 1981).

    Article  CAS  Google Scholar 

  8. Floudas, G. & Stepanek, P. Structure and dynamics of poly(n-decyl methacrylate) below and above the glass transition. Macromolecules 31, 6951–6957 ( 1998).

    Article  CAS  Google Scholar 

  9. Arrighi, V. et al. Observation of local order in poly(di-n-alkyl itaconate)s. Macromolecules 33, 4989–4991 ( 2000).

    Article  CAS  Google Scholar 

  10. McCreight, K.W. et al. Phase structures and transition behaviors in polymers containing rigid rodlike backbones with flexible side chains. J. Polym. Sci. B 37, 1633–1646 ( 1999).

    Article  CAS  Google Scholar 

  11. Nurulla, I., Morikita, T., Fukumoto, H. & Yamamoto, T. Preparation and properties of poly[(2-alkylbenzimidazole)-alt-thiophene]s with long alkyl side chains. Macromol. Chem. Phys. 202, 2335–2340 ( 2001).

    Article  CAS  Google Scholar 

  12. Turner Jones, A. Crystallinity in isotactic polyolefins with unbranched side chains. Makromol. Chem. 71, 1–32 ( 1964).

    Article  Google Scholar 

  13. Böhmer, R., Ngai, K.L., Angell, C.A. & Plazek, D.J. Nonexponential relaxations in strong and fragile glass formers. J. Chem. Phys. 99, 4201–4209 ( 1993).

    Article  Google Scholar 

  14. Johari, G.P. Glass transition and secondary relaxations in molecular liquids and crystals. Ann. NY Acad. Sci. 279, 117–140 ( 1976).

    Article  CAS  Google Scholar 

  15. Beiner, M., Kabisch, O., Reichl, S. & Huth, H. Structural and dynamic heterogeneities in higher poly(n-alkylmethacrylate)s. J. Non-Cryst. Solids 307–310, 658–666 ( 2002).

    Article  Google Scholar 

  16. Arndt, M., Stannarius, R., Groothues, H., Hempel, E. & Kremer, F. Length scale of cooperativity in the dynamic glass transition. Phys. Rev. Lett. 79, 2077–2080 ( 1997).

    Article  CAS  Google Scholar 

  17. Huwe, A., Kremer, F., Behrens, P. & Schwieger, W. Molecular dynamics in confining space: From the single molecule to the liquid state. Phys. Rev. Lett. 82, 2338–2341 ( 1999).

    Article  CAS  Google Scholar 

  18. Jackson, C.L. & McKenna, G.B. The glass transition of organic liquids confined to small pores. J. Non-Cryst. Solids 131–133, 221–224 ( 1991).

    Article  Google Scholar 

  19. Donth, E. Glasübergang (Akademie, Berlin, 1981).

  20. Adam, G. & Gibbs, J.H. On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J. Chem. Phys. 43, 139–146 ( 1965).

    Article  CAS  Google Scholar 

  21. Tracht, U. et al. Length scale of dynamic heterogeneities at the glass transition as determined by multidimensional nmr. Phys. Rev. Lett. 81, 2727–2730 ( 1998).

    Article  CAS  Google Scholar 

  22. Russell, E.V., Israeloff, N.E., Walther, L.E. & Alvarez Gomariz, H. Nanometer scale dielectric fluctuations at the glass transition. Phys. Rev. Lett. 81, 1461–1464 ( 1998).

    Article  CAS  Google Scholar 

  23. Donth, E. The Glass Transition. Relaxation Dynamics in Liquids and Disordered Materials (Springer, Berlin, 2001).

    Google Scholar 

  24. Huang, D. & McKenna, G.B. New insights into the fragility dilemma in liquids. J. Chem. Phys. 114, 5621–5630 ( 2001).

    Article  CAS  Google Scholar 

  25. Gaur, U. & Wunderlich, B. The glass transition temperature of polyethylene. Macromolecules 13, 445–446 ( 1980).

    Article  CAS  Google Scholar 

  26. Christenson, H.K. Confinement effects on freezing and melting. J. Phys. Condens. Matter 13, R95–R133 ( 2001).

    Article  CAS  Google Scholar 

  27. Loo, Y.L., Register, R.A., Ryan, A.J. & Dee, G.T. Polymer crystallization confined in one, two, or three dimensions. Macromolecules 34, 8968–8977 ( 2001).

    Article  CAS  Google Scholar 

  28. Mao, G. et al. Molecular design, synthesis, and characterization of liquid crystal-coil diblock copolymers with azobenzene side groups. Macromolecules 30, 2556–2567 ( 1997).

    Article  CAS  Google Scholar 

  29. Thurn-Albrecht, T. et al. Ultrahigh-density nanowire arrays grown in self-assembled diblock copolymer templates. Science 290, 2126–2129 ( 2000).

    Article  CAS  Google Scholar 

  30. Pernot, H., Baumert, M., Court, F. & Leibler, H. Design and properties of co-continous nanostructured polymers by reactive blending. Nature Mater. 1, 54–58 ( 2002).

    Article  CAS  Google Scholar 

  31. Frauenfelder, H. & McMahon, B. Dynamics and function of proteins: The search for general concepts. Proc. Natl Acad. Sci. USA 95, 4795–4797 ( 1998).

    Article  CAS  Google Scholar 

  32. Beyer, F.L. et al. Graft copolymers with regularly spaced, tetrafunctional branch points: Morphology and grain structure. Macromolecules 33, 2039–2048 ( 2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Otto Kabisch and Sabine Reichl for contributing X-ray scattering measurements and the Deutsche Forschungsgemeinschaft (SFB 418) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Beiner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beiner, M., Huth, H. Nanophase separation and hindered glass transition in side-chain polymers. Nature Mater 2, 595–599 (2003). https://doi.org/10.1038/nmat966

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat966

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing