Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Resolution of de novo HIV production and trafficking in immature dendritic cells

Abstract

The challenge in observing de novo virus production in human immunodeficiency virus (HIV)-infected dendritic cells (DCs) is the lack of resolution between cytosolic immature and endocytic mature HIV gag protein. To track HIV production, we developed an infectious HIV construct bearing a diothiol-resistant tetracysteine motif (dTCM) at the C terminus of HIV p17 matrix within the HIV gag protein. Using this construct in combination with biarsenical dyes, we observed restricted staining of the dTCM to de novo–synthesized uncleaved gag in the DC cytosol. Co-staining with HIV gag antibodies, reactive to either p17 matrix or p24 capsid, preferentially stained mature virions and thus allowed us to track the virus at distinct stages of its life cycle within DCs and upon transfer to neighboring DCs or T cells. Thus, in staining HIV gag with biarsenical dye system in situ, we characterized a replication-competent virus capable of being tracked preferentially within infected leukocytes and observed in detail the dynamic nature of the HIV production and transfer in primary DCs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Introduction of dTCM in the matrix-capsid protein spacer region has limited effects on HIV replication.
Figure 2: Maximizing signal-to-noise ratio and staining restriction with FlAsH in immature DCs.
Figure 3: Dichotomy of FlAsH and mAb staining is a function of dTCM redox state and gag cleavage.
Figure 4: FlAsH-Matrix staining is absent in DC endosomes.
Figure 5: HIV production and release at the surface of DCs.
Figure 6: Aggregation and transfer of HIV in DC-DC conjugates.
Figure 7: HIV mobilization in DCs after CD4+ T cell contact FlAsH-matrix mobilization from HIV-infected immature DC toward CD4+ T cell contact points in the presence or absence of HIV envelope.
Figure 8: Schematic summary of FlAsH and mAb bias in the viral life cycle.

Similar content being viewed by others

References

  1. Kawamura, T. et al. Candidate microbicides block HIV-1 infection of human immature Langerhans cells within epithelial tissue explants. J. Exp. Med. 192, 1491–1500 (2000).

    Article  CAS  Google Scholar 

  2. Lore, K., Smed-Sorensen, A., Vasudevan, J., Mascola, J.R. & Koup, R.A. Myeloid and plasmacytoid dendritic cells transfer HIV-1 preferentially to antigen-specific CD4+ T cells. J. Exp. Med. 201, 2023–2033 (2005).

    Article  CAS  Google Scholar 

  3. Granelli-Piperno, A., Golebiowska, A., Trumpfheller, C., Siegal, F.P. & Steinman, R.M. HIV-1-infected monocyte-derived dendritic cells do not undergo maturation but can elicit IL-10 production and T cell regulation. Proc. Natl. Acad. Sci. USA 101, 7669–7674 (2004).

    Article  CAS  Google Scholar 

  4. Moris, A. et al. DC-SIGN promotes exogenous MHC-I-restricted HIV-1 antigen presentation. Blood 103, 2648–2654 (2004).

    Article  CAS  Google Scholar 

  5. Buseyne, F. et al. MHC-I-restricted presentation of HIV-1 virion antigens without viral replication. Nat. Med. 7, 344–349 (2001).

    Article  CAS  Google Scholar 

  6. Rappersberger, K. et al. Langerhans' cells are an actual site of HIV-1 replication. Intervirology 29, 185–194 (1988).

    CAS  PubMed  Google Scholar 

  7. Patterson, S. & Knight, S.C. Susceptibility of human peripheral blood dendritic cells to infection by human immunodeficiency virus. J. Gen. Virol. 68, 1177–1181 (1987).

    Article  Google Scholar 

  8. Blom, J., Nielsen, C. & Rhodes, J.M. An ultrastructural study of HIV-infected human dendritic cells and monocytes/macrophages. APMIS 101, 672–680 (1993).

    Article  CAS  Google Scholar 

  9. Hladik, F. et al. Dendritic cell-T-cell interactions support coreceptor-independent human immunodeficiency virus type 1 transmission in the human genital tract. J. Virol. 73, 5833–5842 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Raposo, G. et al. Human macrophages accumulate HIV-1 particles in MHC II compartments. Traffic 3, 718–729 (2002).

    Article  CAS  Google Scholar 

  11. Pelchen-Matthews, A., Kramer, B. & Marsh, M. Infectious HIV-1 assembles in late endosomes in primary macrophages. J. Cell Biol. 162, 443–455 (2003).

    Article  CAS  Google Scholar 

  12. Welsch, S. et al. HIV-1 Buds Predominantly at the Plasma Membrane of Primary Human Macrophages. PLoS Pathog. 3, e36 (2007).

    Article  Google Scholar 

  13. Jouvenet, N. et al. Plasma membrane is the site of productive HIV-1 particle assembly. PLoS Biol. 4, e435 (2006).

    Article  Google Scholar 

  14. Deneka, M., Pelchen-Matthews, A., Byland, R., Ruiz-Mateos, E. & Marsh, M. In macrophages, HIV-1 assembles into an intracellular plasma membrane domain containing the tetraspanins CD81, CD9, and CD53. J. Cell Biol. 177, 329–341 (2007).

    Article  CAS  Google Scholar 

  15. Shin, N.H., Hartigan-O'Connor, D., Pfeiffer, J.K. & Telesnitsky, A. Replication of lengthened Moloney murine leukemia virus genomes is impaired at multiple stages. J. Virol. 74, 2694–2702 (2000).

    Article  CAS  Google Scholar 

  16. Rhodes, T.D., Nikolaitchik, O., Chen, J., Powell, D. & Hu, W.S. Genetic recombination of human immunodeficiency virus type 1 in one round of viral replication: effects of genetic distance, target cells, accessory genes, and lack of high negative interference in crossover events. J. Virol. 79, 1666–1677 (2005).

    Article  CAS  Google Scholar 

  17. Jamieson, B.D. & Zack, J.A. In vivo pathogenesis of a human immunodeficiency virus type 1 reporter virus. J. Virol. 72, 6520–6526 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Page, K.A., Liegler, T. & Feinberg, M.B. Use of a green fluorescent protein as a marker for human immunodeficiency virus type 1 infection. AIDS Res. Hum. Retroviruses 13, 1077–1081 (1997).

    Article  CAS  Google Scholar 

  19. Petit, C. et al. Nef is required for efficient HIV-1 replication in cocultures of dendritic cells and lymphocytes. Virology 286, 225–236 (2001).

    Article  CAS  Google Scholar 

  20. Heinzinger, N.K. et al. The Vpr protein of human immunodeficiency virus type 1 influences nuclear localization of viral nucleic acids in nondividing host cells. Proc. Natl. Acad. Sci. USA 91, 7311–7315 (1994).

    Article  CAS  Google Scholar 

  21. Neil, S.J., Eastman, S.W., Jouvenet, N. & Bieniasz, P.D. HIV-1 Vpu promotes release and prevents endocytosis of nascent retrovirus particles from the plasma membrane. PLoS Pathog. 2, e39 (2006).

    Article  Google Scholar 

  22. Griffin, B.A., Adams, S.R. & Tsien, R.Y. Specific covalent labeling of recombinant protein molecules inside live cells. Science 281, 269–272 (1998).

    Article  CAS  Google Scholar 

  23. Gaietta, G. et al. Multicolor and electron microscopic imaging of connexin trafficking. Science 296, 503–507 (2002).

    Article  CAS  Google Scholar 

  24. Martin, B.R., Giepmans, B.N., Adams, S.R. & Tsien, R.Y. Mammalian cell-based optimization of the biarsenical-binding tetracysteine motif for improved fluorescence and affinity. Nat. Biotechnol. 23, 1308–1314 (2005).

    Article  CAS  Google Scholar 

  25. Rudner, L. et al. Dynamic fluorescent imaging of human immunodeficiency virus type 1 gag in live cells by biarsenical labeling. J. Virol. 79, 4055–4065 (2005).

    Article  CAS  Google Scholar 

  26. Muller, B. et al. Construction and characterization of a fluorescently labeled infectious human immunodeficiency virus type 1 derivative. J. Virol. 78, 10803–10813 (2004).

    Article  Google Scholar 

  27. Davis, D.A. et al. Conserved cysteines of the human immunodeficiency virus type 1 protease are involved in regulation of polyprotein processing and viral maturation of immature virions. J. Virol. 73, 1156–1164 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Adams, S.R. et al. New biarsenical ligands and tetracysteine motifs for protein labeling in vitro and in vivo: synthesis and biological applications. J. Am. Chem. Soc. 124, 6063–6076 (2002).

    Article  CAS  Google Scholar 

  29. McDonald, D. et al. Visualization of the intracellular behavior of HIV in living cells. J. Cell Biol. 159, 441–452 (2002).

    Article  CAS  Google Scholar 

  30. Ono, A., Waheed, A.A., Joshi, A. & Freed, E.O. Association of human immunodeficiency virus type 1 gag with membrane does not require highly basic sequences in the nucleocapsid: use of a novel Gag multimerization assay. J. Virol. 79, 14131–14140 (2005).

    Article  CAS  Google Scholar 

  31. Frank, I. et al. Infectious and whole inactivated simian immunodeficiency viruses interact similarly with primate dendritic cells (DCs): differential intracellular fate of virions in mature and immature DCs. J. Virol. 76, 2936–2951 (2002).

    Article  CAS  Google Scholar 

  32. Turville, S.G. et al. Immunodeficiency virus uptake, turnover, and 2-phase transfer in human dendritic cells. Blood 103, 2170–2179 (2004).

    Article  CAS  Google Scholar 

  33. Huang, M., Orenstein, J.M., Martin, M.A. & Freed, E.O. p6Gag is required for particle production from full-length human immunodeficiency virus type 1 molecular clones expressing protease. J. Virol. 69, 6810–6818 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Gaietta, G.M. et al. Golgi twins in late mitosis revealed by genetically encoded tags for live cell imaging and correlated electron microscopy. Proc. Natl. Acad. Sci. USA 103, 17777–17782 (2006).

    Article  CAS  Google Scholar 

  35. Nydegger, S., Khurana, S., Krementsov, D.N., Foti, M. & Thali, M. Mapping of tetraspanin-enriched microdomains that can function as gateways for HIV-1. J. Cell Biol. 173, 795–807 (2006).

    Article  CAS  Google Scholar 

  36. Jolly, C., Kashefi, K., Hollinshead, M. & Sattentau, Q.J. HIV-1 cell to cell transfer across an Env-induced, actin-dependent synapse. J. Exp. Med. 199, 283–293 (2004).

    Article  CAS  Google Scholar 

  37. Pope, M., Gezelter, S., Gallo, N., Hoffman, L. & Steinman, R.M. Low levels of HIV-1 infection in cutaneous dendritic cells promote extensive viral replication upon binding to memory CD4+ T cells. J. Exp. Med. 182, 2045–2056 (1995).

    Article  CAS  Google Scholar 

  38. Reece, J.C. et al. HIV-1 selection by epidermal dendritic cells during transmission across human skin. J. Exp. Med. 187, 1623–1631 (1998).

    Article  CAS  Google Scholar 

  39. Turville, S.G., Vermeire, K., Balzarini, J. & Schols, D. Sugar-binding proteins potently inhibit dendritic cell human immunodeficiency virus type 1 (HIV-1) infection and dendritic-cell-directed HIV-1 transfer. J. Virol. 79, 13519–13527 (2005).

    Article  CAS  Google Scholar 

  40. Arhel, N. et al. Quantitative four-dimensional tracking of cytoplasmic and nuclear HIV-1 complexes. Nat. Methods 3, 817–824 (2006).

    Article  CAS  Google Scholar 

  41. McDonald, D. et al. Recruitment of HIV and its receptors to dendritic cell-T cell junctions. Science 300, 1295–1297 (2003).

    Article  CAS  Google Scholar 

  42. Leichert, L.I. & Jakob, U. Protein thiol modifications visualized in vivo. PLoS Biol. 2, e333 (2004).

    Article  Google Scholar 

  43. Austin, C.D. et al. Oxidizing potential of endosomes and lysosomes limits intracellular cleavage of disulfide-based antibody-drug conjugates. Proc. Natl. Acad. Sci. USA 102, 17987–17992 (2005).

    Article  CAS  Google Scholar 

  44. Lederman, M.M., Offord, R.E. & Hartley, O. Microbicides and other topical strategies to prevent vaginal transmission of HIV. Nat. Rev. Immunol. 6, 371–382 (2006).

    Article  CAS  Google Scholar 

  45. Bartz, S.R. & Vodicka, M.A. Production of high-titer human immunodeficiency virus type 1 pseudotyped with vesicular stomatitis virus glycoprotein. Methods 12, 337–342 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge assistance from the members of the Rockefeller University's Bioimaging Facility and core director A. North, F. Brilot for help with immunofluorescence staining, bioimaging analysis and editing the manuscript, S. Trapp for assistance with protein chemistry and Luminex Analyses, and I. Frank for critical evaluation of the manuscript. We thank M. Federico (Istituto Superiore di Sanità) for the deltaenvNL43 plasmid, E. Freed (US National Institute of Allergy and Infectious Diseases) for the pEnvAD8, pEnvNL43p6L1Term and pEnvNL43p6PTAP- NL43 plasmids and T. Hope (Feinberg School of Medicine, Northwestern University) for the mrfp-VPR plasmid. The TZM-bl cell line and The pHEF-VSV-G envelope plasmid was obtained from the AIDS Reagent Program, National Institute of Allergy and Infectious Diseases). This work was outlined and supported by a CJ Martin Fellowship of the National Health and Medical Research Council of Australia (S.G.T.). Also supported by National Institute of Health grants AI040877, HD041752, AI052048, AI065413, DE015512 and AI065412. H.S. and N.R. are supported by the Tilak—The Health Company (Innsbruck, Austria).

Author information

Authors and Affiliations

Authors

Contributions

S.G.T. conceived and designed the study, acquired, analyzed and interpreted data, and wrote the manuscript; M.A. acquired and analyzed data; H.S. acquired and analyzed electron microscopy data; N.R. analyzed electron microscopy data and revised the manuscript; M.R. supervised the project and wrote the manuscript.

Corresponding author

Correspondence to Stuart G Turville.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4, Supplementary Tables 1–2, Supplementary Methods (PDF 3863 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turville, S., Aravantinou, M., Stössel, H. et al. Resolution of de novo HIV production and trafficking in immature dendritic cells. Nat Methods 5, 75–85 (2008). https://doi.org/10.1038/nmeth1137

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth1137

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing