Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Geomicrobiology of the built environment

Microbial colonization and growth can have significant impacts on the built environment, resulting in a range of effects, from discolouration and staining to biodeterioration and decay. In some cases, formation of biofilms, crusts and patinas may confer bioprotection of the substrate. This Perspective aims to discuss how geomicrobial transformations in the natural environment—particularly those that involve rocks, minerals, metals and organic matter—may be applied to understand similar processes occurring on fabricated human structures. However, the built environment may offer further strictures as well as benefits for microbial activity, and these should be taken into account when considering analogy with natural processes, especially when linking observations of microbial biodiversity to the more obvious manifestations of microbial attack.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Some of the main influences and effects of microorganisms on components of the built environment and human-made structures.
Figure 2: Examples of biofouling, discolouration, staining and biodeterioration of cultural heritage predominantly caused by algae, fungi and lichens.

References

  1. Ehrlich, H. L. & Newman, D. K. Geomicrobiology 5th edn (CRC Press, 2009).

    Google Scholar 

  2. Gadd, G. M. Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156, 609–643 (2010).

    CAS  PubMed  Google Scholar 

  3. Sand, W. Microbial mechanisms of deterioration of inorganic substrates: a general mechanistic overview. Int. Biodeterior. Biodegrad. 40, 183–190 (1997).

    CAS  Google Scholar 

  4. Warsheid, T. & Braams, J. Biodeterioration of stone: overview. Int. Biodeterior. Biodegrad. 46, 343–368 (2000).

    Google Scholar 

  5. Ranalli, G., Zanardini, E. & Sorlini, C. in Encyclopedia of Microbiology (ed. Schaechter, M. ) 191–205 (Elsevier, 2009).

    Google Scholar 

  6. Scheerer, S., Ortega-Morales, O. & Gaylarde, C. Microbial deterioration of stone monuments: an updated overview. Adv. Appl. Microbiol. 66, 97–139 (2009).

    CAS  PubMed  Google Scholar 

  7. Cutler, N. & Viles, H. Eukaryotic microorganisms and stone biodeterioration. Geomicrobiol. J. 27, 630–646 (2010).

    Google Scholar 

  8. Kembel, S. W. et al. Architectural design drives the biogeography of indoor bacterial communities. PLoS ONE 9, e87093 (2014).

    PubMed  PubMed Central  Google Scholar 

  9. Brown, G. Z., Kline, J., Mhuireach, G., Northcutt, D. & Stenson, J. Making microbiology of the built environment relevant to design. Microbiome 4, 6 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Adams, R. I., Miletto, M., Taylor, J. W. & Bruns, T. D. The diversity and distribution of fungi on residential surfaces. PLoS ONE 8, e78866 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Konya, T. & Scott, J. A. Recent advances in the microbiology of the built environment. Curr. Sustain. Renew. Energy Rep. 1, 35–42 (2014).

    Google Scholar 

  12. Adams, R. I., Bateman, A. C., Bik, H. M. & Meadow, J. F. Microbiota of the indoor environment: a meta-analysis. Microbiome 3, 49 (2015).

    PubMed  PubMed Central  Google Scholar 

  13. Leung, M. H. Y. & Lee, P. K. H. The roles of the outdoors and occupants in contributing to a potential pan-microbiome of the built environment: a review. Microbiome 4, 21 (2016).

    PubMed  PubMed Central  Google Scholar 

  14. Lax, S. et al. Longitudinal analysis of microbial interaction between humans and the indoor environment. Science 345, 1048–1052 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Hoisington, A. J., Brenner, L. A., Kinney, K. A., Postolache, T. T. & Lowry, C. A. The microbiome of the built environment and mental health. Microbiome 3, 60 (2015).

    PubMed  PubMed Central  Google Scholar 

  16. Cutler, N. A., Oliver, A. E., Viles, H. A., Ahmad, S. & Whiteley A. S. The characterisation of eukaryotic microbial communities on sandstone buildings in Belfast, UK, using TRFLP and 454 pyrosequencing. Int. Biodeterior. Biodegrad. 82, 124–133 (2013).

    CAS  Google Scholar 

  17. Ettenauer, J. D. et al. Microbes on building materials — evaluation of DNA extraction protocols as common basis for molecular analysis. Sci. Total Environ. 439, 44–53 (2012).

    CAS  PubMed  Google Scholar 

  18. Amend, A. S., Seifert, K. A., Samson, R. & Bruns, T. D. Indoor fungal composition is geographically patterned and more diverse in temperate zones than in the tropics. Proc. Natl Acad. Sci. USA 107, 13748–13753 (2010).

    CAS  PubMed  Google Scholar 

  19. Amend, A. S., Seifert, K. A. & Bruns, T. D. Quantifying microbial communities with 454 pyrosequencing: does read abundance count? Mol. Ecol. 19, 5555–5565 (2010).

    CAS  PubMed  Google Scholar 

  20. Franzosa, E. A. et al. Sequencing and beyond: integrating molecular ‘omics’ for microbial community profiling. Nat. Rev. Microbiol. 13, 360–372.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Gutarowska, B. et al. Metabolomic and high-throughput sequencing analysis—modern approach for the assessment of biodeterioration of materials from historic buildings. Front. Microbiol. 6, 979 (2015).

    PubMed  PubMed Central  Google Scholar 

  22. Kelley, S. T. & Gilbert, J. A. Studying the microbiology of the indoor environment. Genome Biol. 14, 202 (2013).

    PubMed  PubMed Central  Google Scholar 

  23. Gorbushina, A. A. Life on the rocks. Environ. Microbiol. 9, 1613–1631 (2007).

    CAS  PubMed  Google Scholar 

  24. Gadd, G. M. Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol. Res. 111, 3–49 (2007).

    CAS  PubMed  Google Scholar 

  25. Gadd, G. M. Bacterial and fungal geomicrobiology: a problem with communities? Geobiology 6, 278–284 (2008).

    CAS  PubMed  Google Scholar 

  26. Druschel, G. K. & Kappler, A. Geomicrobiology and microbial geochemistry. Elements 11, 389–394 (2015).

    Google Scholar 

  27. Sterflinger, K. Fungi as geologic agents. Geomicrobiol. J. 17, 97–124 (2000).

    CAS  Google Scholar 

  28. Sterflinger, K. Fungi: their role in deterioration of cultural heritage. Fungal Biol. Rev. 24, 47–55 (2010).

    Google Scholar 

  29. Gadd, G. M. in Encyclopedia of Ecology (eds Jorgensen, S. E. & Fath, B. ) 1709–1717 (Elsevier, 2008).

    Google Scholar 

  30. Gadd, G. M. in Encyclopedia of Geobiology (eds Reitner, J. & Thiel, V. ) 416–432 (Springer, 2011).

    Google Scholar 

  31. Burford, E. P., Fomina, M. & Gadd, G. M. Fungal involvement in bioweathering and biotransformation of rocks and minerals. Mineral. Mag. 67, 1127–1155 (2003).

    CAS  Google Scholar 

  32. Hawksworth, D. To be or not to be a lichen. Nature 433, 468 (2005).

    CAS  PubMed  Google Scholar 

  33. Viles, H. Ecological perspectives on rock surface weathering: towards a conceptual model. Geomorphology 13, 21–35 (1995).

    Google Scholar 

  34. Seaward, M. R. D. Lichens, agents of monumental destruction. Microbiol. Today 30, 110–112 (2003).

    Google Scholar 

  35. Arino, X., Gomez-Bolea, A. & Saiz-Jimenez, C. Lichens on ancient mortars. Int. Biodeterior. Biodegrad. 40, 217–224 (1997).

    Google Scholar 

  36. Uroz, S., Calvaruso, C., Turpault, M.-P. & Frey-Klett, P. Mineral weathering by bacteria: ecology, actors and mechanisms. Trends Microbiol. 17, 378–387 (2009).

    CAS  PubMed  Google Scholar 

  37. Gadd, G. M. & Raven, J. A. Geomicrobiology of eukaryotic microorganisms. Geomicrobiol. J. 27, 491–519 (2010).

    CAS  Google Scholar 

  38. Hoppert, M., Flies, C., Pohl, W., Gunzl, B. & Schneider, J. Colonization strategies of lithobiontic microorganisms on carbonate rocks. Environ. Geol. 46, 421–428 (2004).

    CAS  Google Scholar 

  39. Gorbushina, A. A. & Broughton, W. J. Microbiology of the atmosphere-rock interface: how biological interactions and physical stresses modulate a sophisticated microbial ecosystem. Ann. Rev. Microbiol. 63, 431–450 (2009).

    CAS  Google Scholar 

  40. Gorbushina, A. A. in Fungi in Biogeochemical Cycles (ed. Gadd, G. M. ) 267–288 (Cambridge Univ. Press, 2006).

    Google Scholar 

  41. Gorbushina, A. A. et al. On the role of black fungi in colour change and biodeterioration of antique marbles. Geomicrobiol. J. 11, 205–221 (1993).

    Google Scholar 

  42. Grote, G. & Krumbein, W. E. Microbial precipitation of manganese by bacteria and fungi from desert rock and rock varnish. Geomicrobiol. J. 10, 49–57 (1992).

    CAS  Google Scholar 

  43. Carter, N. E. A. & Viles, H. A. Bioprotection explored: the story of a little known earth surface process. Geomorphology 67, 273–281 (2005).

    Google Scholar 

  44. McIlroy de la Rosa, J. P., Warke, P. A. & Smith, B. J. The effects of lichen cover upon the rate of solutional weathering of limestone. Geomorphology 220, 81–92 (2014).

    Google Scholar 

  45. Jurado, V. et al. Recolonization of mortars by endolithic organisms on the walls of San Roque church in Campeche (Mexico): a case of tertiary bioreceptivity. Constr. Build. Mater. 53, 348–359 (2014).

    Google Scholar 

  46. Flemming, H.-C. et al. Biofilms: an emergent form of bacterial life. Nat. Rev. Microbiol. 14, 563–575 (2016).

    CAS  Google Scholar 

  47. Walker, J. J. & Pace, N. R. Endolithic microbial ecosystems. Ann. Rev. Microbiol. 61, 331–347 (2007).

    CAS  Google Scholar 

  48. Kumar, R. & Kumar, A. V. Biodeterioration of Stone in Tropical Environments: An Overview (Barnes & Noble, 1999).

    Google Scholar 

  49. Gleeson, D. B., Clipson, N. J. W., Melville, K., Gadd, G. M. & McDermott, F. P. Mineralogical control of fungal community structure in a weathered pegmatitic granite. Microb. Ecol. 50, 360–368 (2005).

    PubMed  Google Scholar 

  50. Gleeson, D. B. et al. Mineralogical influences on bacterial community structure on a weathered pegmatitic granite. Microb. Ecol. 51, 526–534 (2006).

    PubMed  Google Scholar 

  51. Gleeson, D. B., Melville, K., McDermott, F. P., Clipson, N. J. W. & Gadd, G. M. Molecular characterization of fungal communities in sandstone. Geomicrobiol. J. 27, 559–571 (2010).

    Google Scholar 

  52. Coutinho, M. L., Miller, A. Z. & Macedo, M. F. Biological colonization and biodeterioration of architectural ceramic materials: an overview. J. Cult. Herit. 16, 759–777 (2015).

    Google Scholar 

  53. Cwalina, B. in Understanding Biocorrosion (eds Liengen, T., Feron, D., Basseguy, R. & Beech, I. B. ) 281–312 (Elsevier, 2014).

    Google Scholar 

  54. Zhdanova, N. N., Zakharchenko, V. A., Vember, V. V. & Nakonechnaya, L. T. Fungi from Chernobyl: mycobiota of the inner regions of the containment structures of the damaged nuclear reactor. Mycol. Res. 104, 1421–1426 (2000).

    Google Scholar 

  55. Gaylarde, C. & Gaylarde, P. M. A comparative study of the major microbial biomass of biofilms on exteriors of buildings in Europe and Latin America. Int. Biodeterior. Biodegrad. 55, 131–139 (2005).

    Google Scholar 

  56. de la Torre, M. A., Gomez-Alarcon, G., Vizcaino, C. & Garcia, M. T. Biochemical mechanisms of stone alteration carried out by filamentous fungi living on monuments. Biogeochemistry 19, 129–147 (1993).

    CAS  Google Scholar 

  57. Koestler, R. J., Warscheid, T. & Nieto, F. in Saving Our Cultural Heritage: The Conservation of Historic Stone Structures (eds Baer, N. S. & Snethlage, N. S. ) 25–36 (Wiley, 1997).

    Google Scholar 

  58. Roeselers, G., van Loosdrecht, M. C. M. & Muyzer, G. Heterotrophic pioneers facilitate phototrophic biofilm development. Microb. Ecol. 54, 578–585 (2007).

    CAS  PubMed  Google Scholar 

  59. Mitchell, R. & Gu, J.-D. Changes in the biofilm microflora of limestone caused by atmospheric pollutants. Int. Biodeterior. Biodegrad. 46, 299–303 (2000).

    CAS  Google Scholar 

  60. Hutchens, E. Microbial selectivity on mineral surfaces: possible implications for weathering processes. Fungal Biol. Rev. 23, 115–121 (2009).

    Google Scholar 

  61. Turick, C. E. & Berry, C. J. Review of concrete biodeterioration in relation to nuclear waste. J. Environ. Radioact. 151, 12–21 (2016).

    CAS  PubMed  Google Scholar 

  62. Jongmans, A. G. et al. Rock-eating fungi. Nature 389, 682–683 (1997).

    CAS  Google Scholar 

  63. Lisci, M., Monte, M. & Pacini, E. Lichens and higher plants on stone: a review. Int. Biodeterior. Biodegrad. 51, 1–17 (2003).

    Google Scholar 

  64. Smits, M. in Fungi in Biogeochemical Cycles (ed. Gadd, G. M. ) 311–327 (Cambridge Univ. Press, 2006).

    Google Scholar 

  65. Lian, B., Chen, Y., Zhu, L. & Yang, R. Effect of microbial weathering on carbonate rocks. Earth Sci. Front. 15, 90–99 (2008).

    Google Scholar 

  66. Cockell, C. S. & Herrera, A. Why are some microorganisms boring? Trends Microbiol. 16, 101–106 (2008).

    CAS  PubMed  Google Scholar 

  67. McMaster, T. J. Atomic force microscopy of the fungi-mineral interface: applications in mineral dissolution, weathering and biogeochemistry. Curr. Opin. Biotech. 23, 562–569 (2012).

    CAS  PubMed  Google Scholar 

  68. Chen, J., Blume, H.-P. & Beyer, L. Weathering of rocks induced by lichen colonization — a review. Catena 39, 121–146 (2000).

    CAS  Google Scholar 

  69. de los Rios, A., Galvan, V. & Ascaso, C. In situ microscopical diagnosis of biodeterioration processes at the convent of Santa Cruz la Real, Segovia, Spain. Int. Biodeterior. Biodegrad. 51, 113–120 (2004).

    Google Scholar 

  70. Gadd, G. M. et al. Oxalate production by fungi: significance in geomycology, biodeterioration and bioremediation. Fungal Biol. Rev. 28, 36–55 (2014).

    Google Scholar 

  71. Barker, W. W. & Banfield, J. F. Biologically versus inorganically mediated weathering reactions: relationships between minerals and extracellular microbial polymers in lithobiotic communities. Chem. Geol. 132, 55–69 (1996).

    CAS  Google Scholar 

  72. Wright, J. S. Geomorphology and stone conservation: sandstone decay in Stoke-on-Trent. Struct. Surv. 20, 50–61 (2002).

    Google Scholar 

  73. Barker, W. W. & Banfield, J. F. Zones of chemical and physical interaction at interfaces between microbial communities and minerals: a model. Geomicrobiol. J. 15, 223–244 (1998).

    CAS  Google Scholar 

  74. Li, Z., Liu, L., Chen, J. & Chen, H. H. Cellular dissolution at hypha- and spore-mineral interfaces revealing unrecognized mechanisms and scales of fungal weathering. Geology https://dx.doi.org/10.1130/G37561.1 (2016).

  75. Kim, B. H. & Gadd, G. M. Bacterial Physiology and Metabolism (Cambridge Univ. Press, 2008).

    Google Scholar 

  76. Fomina, M. et al. Fungal deterioration of barrier concrete used in nuclear waste disposal. Geomicrobiol. J. 24, 643–653 (2007).

    CAS  Google Scholar 

  77. Nica, D., Davis, J. L., Kirby, L., Zuo, G. & Roberts, D. J. Isolation and characterization of microorganisms involved in the biodeterioration of concrete in sewers. Int. Biodeter. Biodegrad. 46, 61–68 (2000).

    CAS  Google Scholar 

  78. Gadd, G. M. Fungal production of citric and oxalic acid: importance in metal speciation, physiology and biogeochemical processes. Adv. Microb. Physiol. 41, 47–92 (1999).

    CAS  PubMed  Google Scholar 

  79. Fomina, M., Burford, E. P., Hillier, S., Kierans, M. & Gadd, G. M. Rock-building fungi. Geomicrobiol. J. 27, 624–629 (2010).

    Google Scholar 

  80. Brehm, U., Gorbushina, A. & Mottershead, D. The role of microorganisms and biofilms in the breakdown and dissolution of quartz and glass. Palaeogeol. Palaeoclim. Palaeoecol. 219, 117–129 (2005).

    Google Scholar 

  81. Dedesko, S. & Siegel, J. A. Moisture parameters and fungal communities associated with gypsum drywall in buildings. Microbiome 3, 71 (2015).

    PubMed  PubMed Central  Google Scholar 

  82. Beech, I. B. & Sunner, J. Biocorrosion: towards understanding interactions between biofilms and metals. Curr. Opin. Biotech. 15, 181–186 (2004).

    CAS  PubMed  Google Scholar 

  83. Gu, J.-D. in Encyclopedia of Microbiology 3rd edn. (ed. Schaechter, M. ) 259–269 (Elsevier, 2009).

    Google Scholar 

  84. Rhee, Y. J., Hillier, S., Pendlowski, H. & Gadd, G. M. Pyromorphite formation in a fungal biofilm community growing on lead metal. Environ. Microbiol. 16, 1441–1451 (2014).

    CAS  PubMed  Google Scholar 

  85. Nealson, K. H. & Conrad, P. G. Life: past, present and future. Phil. Trans. R. Soc. Lond. 354, 1923–1939 (1999).

    CAS  Google Scholar 

  86. Wimpenny, J. W. T. & Kinniment, S. in Microbial Biofilms Vol. 1 (eds Lappin-Scott, H. M. & Costerton, J. W. ) 99–117 (Cambridge Univ. Press, 1995).

    Google Scholar 

  87. Aramendia, J. et al. Bioimpact on weathering steel surfaces: oxalates formation and the elucidation of their origin. Int. Biodeterior. Biodegrad. 104, 59–66 (2015).

    CAS  Google Scholar 

  88. Favero-Longo, S. E., Castelli, D., Fubini, B. & Piervittori, R. Lichens on asbestos–cement roofs: bioweathering and biocovering effects. J. Hazard. Mat. 162, 1300–1308 (2009).

    CAS  Google Scholar 

  89. Favero-Longo, S. E. et al. Chrysotile asbestos is progressively converted into a non-fibrous amorphous material by the chelating action of lichen metabolites. J. Environ. Monitor. 7, 764–766 (2005).

    CAS  Google Scholar 

  90. de la Fuente, D., Simancas, J. & Morcillo, M. Morphological study of 16-year patinas formed on copper in a wide range of atmospheric exposures. Corr. Sci. 50, 268–285 (2008).

    CAS  Google Scholar 

  91. Del Monte, M., Sabbioni, C. & Zappia, G. The origin of calcium oxalates on historical buildings, monuments and natural outcrops. Sci. Total Environ. 67, 17–39 (1987).

    CAS  Google Scholar 

  92. Radeka, M., Ranogajec, J., Kiurski, J., Markov, S. & Marinkovic-Neducin, R. Influence of lichen biocorrosion on the quality of ceramic roofing tiles. J. Eur. Ceram. Soc. 27, 1763–1766 (2007).

    CAS  Google Scholar 

  93. Piñar, G. et al. Microscopic, chemical, and molecular-biological investigation of the decayed medieval stained window glasses of two Catalonian churches. Int. Biodeterior. Biodegrad. 84, 388–400 (2013).

    Google Scholar 

  94. Gaylarde, C., Ribas Silva, M. & Warscheid, T. Microbial impact on building materials: an overview. Mater. Struct. 36, 342–352 (2003).

    CAS  Google Scholar 

  95. Urzi, C., Criseo, G., Krumbein, W. E., Wollenzien, U. & Gorbushina, A. A. in Conservation of Stone and Other Materials (ed. Thiel, M.-J. ) 279–286 (Routledge, 1993).

    Google Scholar 

  96. Saiz-Jiminez, C. Biodeterioration vs biodegradation: the role of microorganisms in the removal of pollutants deposited on historic buildings. Int. Biodeterior. Biodegrad. 40, 225–232 (1997).

    Google Scholar 

  97. Gaylarde, C. et al. Interactions between fungi of standard paint test method BS3900. Int. Biodeterior. Biodegrad. 104, 411–418 (2015).

    Google Scholar 

  98. Miletto, M. & Lindow, S. E. Relative and contextual contribution of different sources to the composition and abundance of indoor air bacteria in residences. Microbiome 3, 61 (2015).

    PubMed  PubMed Central  Google Scholar 

  99. Stetzenbach, L. D., Amman, H., Johanning, E., King, G. & Shaughnessy, R. J. Microorganisms, Mold, and Indoor Air Quality (American Society for Microbiology, 2004).

    Google Scholar 

  100. Sterflinger, K. & Pinzari, F. The revenge of time: fungal deterioration of cultural heritage with particular reference to books, paper and parchment. Environ. Microbiol. 14, 559–566 (2012).

    CAS  PubMed  Google Scholar 

  101. Pinzari, F., Zotti, M., De Mico, A. & Calvini, P. Biodegradation of inorganic components in paper documents: formation of calcium oxalate crystals as a consequence of Aspergillus terreus Thom growth. Int. Biodeterior. Biodegrad. 64, 499–505 (2010).

    CAS  Google Scholar 

  102. Brantley, S. L., Goldhaber, M. B. & Ragnarsdottir, K. V. Crossing disciplines and scales to understand the critical zone. Elements 3, 307–314 (2007).

    CAS  Google Scholar 

  103. Gadd, G. M. in Molecular Environmental Soil Science (eds Xu, J. & Sparks, D. L. ) 115–165 (Springer, 2013).

    Google Scholar 

  104. Bonneville, S. et al. Tree-mycorrhiza symbiosis accelerate mineral weathering: evidences from nanometer-scale elemental fluxes at the hypha-mineral interface. Geochim. Cosmochim. Acta 75, 6988–7005 (2011).

    CAS  Google Scholar 

  105. Smits, M. M., Bonneville, S., Benning, L. G., Banwart, S. A. & Leake, J. R. Plant-driven weathering of apatite – the role of an ectomycorrhizal fungus. Geobiology 10, 445–456 (2012).

    CAS  PubMed  Google Scholar 

  106. Chase, J. et al. Geography and location are the primary drivers of office microbiome composition. mSystems 1, e00022-16 (2016).

    PubMed  PubMed Central  Google Scholar 

  107. The MetaSUB International Consortium. The Metagenomics and Metadesign of the Subways and Urban Biomes (MetaSUB) International Consortium inaugural meeting report. Microbiome 4, 24 (2016).

    Google Scholar 

  108. Smits, M. M. et al. The fungal-mineral interface: challenges and considerations of micro-analytical developments. Fungal Biol. Rev. 23, 122–131 (2009).

    Google Scholar 

  109. Rosling, A. et al. Approaches to modelling mineral weathering by fungi. Fungal Biol. Rev. 23, 1–7 (2009).

    Google Scholar 

  110. Sverdrup, H. Chemical weathering of soil minerals and the role of biological processes. Fungal Biol. Rev. 23, 94–100 (2009).

    Google Scholar 

  111. Moses, C., Robinson, D. & Barlow, J. Methods for measuring rock surface weathering and erosion: a critical review. Earth Sci. Rev. 135, 141–161 (2014).

    Google Scholar 

  112. Fouquier, J. et al. Ghost-tree: creating hybrid-gene phylogenetic trees for diversity analyses. Microbiome 4, 11 (2016).

    PubMed  PubMed Central  Google Scholar 

  113. Dick, G. J. & Lam, P. Omic approaches to microbial geochemistry. Elements 11, 403–408 (2015).

    Google Scholar 

  114. Brantley, S. L. et al. Twelve testable hypotheses on the geobiology of weathering. Geobiol. 9, 140–165 (2011).

    CAS  Google Scholar 

  115. Viles, H. A. & Cutler, N. A. Global environmental change and the biology of heritage structures. Global Change Biol. 18, 2406–2418 (2012).

    Google Scholar 

  116. Joseph, E. et al. Protection of metal artifacts with the formation of metal–oxalates complexes by Beauveria bassiana. Front. Microbiol. 2, 270 (2012).

    PubMed  PubMed Central  Google Scholar 

  117. Lyons, W. B. & Harmon, R. S. Why urban geochemistry? Elements 8, 417–422 (2012).

    Google Scholar 

  118. Sabbioni, C., Ghedini, N. & Bonazza, A. Organic anions in damage layers on monuments and buildings. Atmos. Environ. 37, 1261–1269 (2003).

    CAS  Google Scholar 

  119. Garcia-Valles, M., Vendrell-Saz, M., Krumbein, W. E. & Urzi, C. Coloured mineral coatings on monument surfaces as a result of biomineralization: the case of the Tarragona cathedral (Catalonia). Appl. Geochem. 12, 255–266 (1997).

    CAS  Google Scholar 

  120. Monte, M. Oxalate film formation on marble specimens caused by fungus. J. Cult. Herit. 4, 255–258 (2003).

    Google Scholar 

  121. Rosado, T., Gil, M., Mirã o, J., Candeias, A. & Caldeir, A. T. Oxalate biofilm formation in mural paintings due to microorganisms – a comprehensive study. Int. Biodeterior. Biodegrad. 85, 1–7 (2013).

    CAS  Google Scholar 

  122. Pinzari, F., Tate, J., Bicchieri, M., Rhee, Y. J. & Gadd, G. M. Biodegradation of ivory (natural apatite): possible involvement of fungal activity in biodeterioration of the Lewis Chessmen. Environ. Microbiol. 15, 1050–1062 (2013).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support in G.M.G.'s laboratory is received from the Natural Environment Research Council (NE/M010910/1 (TeaSe); NE/M011275/1 (COG3)), which is gratefully acknowledged. G.M.G. also gratefully acknowledges an award under the 1000 Talents Plan with the Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China, and support from the National Natural Science Foundation of China (U1503281).

Author information

Authors and Affiliations

Authors

Contributions

G.M.G. planned and wrote the article, supplied the figures, and originated the hypotheses, ideas and conclusions therein.

Corresponding author

Correspondence to Geoffrey Michael Gadd.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gadd, G. Geomicrobiology of the built environment. Nat Microbiol 2, 16275 (2017). https://doi.org/10.1038/nmicrobiol.2016.275

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nmicrobiol.2016.275

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology