Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A new mode of corticothalamic transmission revealed in the Gria4−/− model of absence epilepsy

Abstract

Cortico-thalamo-cortical circuits mediate sensation and generate neural network oscillations associated with slow-wave sleep and various epilepsies. Cortical input to sensory thalamus is thought to mainly evoke feed-forward synaptic inhibition of thalamocortical (TC) cells via reticular thalamic nucleus (nRT) neurons, especially during oscillations. This relies on a stronger synaptic strength in the cortico-nRT pathway than in the cortico-TC pathway, allowing the feed-forward inhibition of TC cells to overcome direct cortico-TC excitation. We found a systemic and specific reduction in strength in GluA4-deficient (Gria4−/−) mice of one excitatory synapse of the rhythmogenic cortico-thalamo-cortical system, the cortico-nRT projection, and observed that the oscillations could still be initiated by cortical inputs via the cortico-TC-nRT-TC pathway. These results reveal a previously unknown mode of cortico-thalamo-cortical transmission, bypassing direct cortico-nRT excitation, and describe a mechanism for pathological oscillation generation. This mode could be active under other circumstances, representing a previously unknown channel of cortico-thalamo-cortical information processing.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Gria4−/− mice display spontaneous SWDs.
Figure 2: Evoked oscillations are enhanced in thalamic slices from Gria4−/− mice.
Figure 3: Absence of AMPA receptor GluA4 alters synaptic excitation in thalamic reticular nucleus.
Figure 4: Selective optical stimulation of TC axons evokes similar EPSCs in nRT neurons from wild-type and Gria4−/− mice.
Figure 5: Selective optical stimulation of CT axons evokes smaller EPSCs in nRT neurons from Gria4−/− mice.
Figure 6: Selective optical stimulation of CT axons evokes similar EPSCs in TC neurons from wild-type and Gria4−/− mice.
Figure 7: Specific reduction in the synaptic strength of the CT-nRT pathway in Gria4−/− mice abolishes the feed-forward inhibition in the CT-nRT-TC pathway and results in a hyperactivation of TC cells by CT inputs.

Similar content being viewed by others

References

  1. Steriade, M. Corticothalamic networks, oscillations, and plasticity. Adv. Neurol. 77, 105–134 (1998).

    CAS  PubMed  Google Scholar 

  2. Mountcastle, V. Perceptual Neuroscience (Harvard University Press, Cambridge, Massachusetts, 1998).

  3. Beenhakker, M.P. & Huguenard, J.R. Neurons that fire together also conspire together: is normal sleep circuitry hijacked to generate epilepsy? Neuron 62, 612–632 (2009).

    Article  CAS  Google Scholar 

  4. Steriade, M. & Contreras, D. Relations between cortical and thalamic cellular events during transition from sleep patterns to paroxysmal activity. J. Neurosci. 15, 623–642 (1995).

    Article  CAS  Google Scholar 

  5. Sillito, A.M. & Jones, H.E. Corticothalamic interactions in the transfer of visual information. Phil. Trans. R. Soc. Lond. B 357, 1739–1752 (2002).

    Article  Google Scholar 

  6. von Krosigk, M., Monckton, J.E., Reiner, P.B. & McCormick, D.A. Dynamic properties of corticothalamic excitatory postsynaptic potentials and thalamic reticular inhibitory postsynaptic potentials in thalamocortical neurons of the guinea-pig dorsal lateral geniculate nucleus. Neuroscience 91, 7–20 (1999).

    Article  CAS  Google Scholar 

  7. Warren, R.A., Agmon, A. & Jones, E.G. Oscillatory synaptic interactions between ventroposterior and reticular neurons in mouse thalamus in vitro. J. Neurophysiol. 72, 1993–2003 (1994).

    Article  CAS  Google Scholar 

  8. Destexhe, A., Contreras, D. & Steriade, M. Mechanisms underlying the synchronizing action of corticothalamic feedback through inhibition of thalamic relay cells. J. Neurophysiol. 79, 999–1016 (1998).

    Article  CAS  Google Scholar 

  9. Pinault, D. et al. Intracellular recordings in thalamic neurones during spontaneous spike and wave discharges in rats with absence epilepsy. J. Physiol. (Lond.) 509, 449–456 (1998).

    Article  CAS  Google Scholar 

  10. von Krosigk, M., Bal, T. & McCormick, D.A. Cellular mechanisms of a synchronized oscillation in the thalamus. Science 261, 361–364 (1993).

    Article  CAS  Google Scholar 

  11. Keinänen, K. et al. A family of AMPA-selective glutamate receptors. Science 249, 556–560 (1990).

    Article  Google Scholar 

  12. Petralia, R.S. & Wenthold, R.J. Light and electron immunocytochemical localization of AMPA-selective glutamate receptors in the rat brain. J. Comp. Neurol. 318, 329–354 (1992).

    Article  CAS  Google Scholar 

  13. Golshani, P., Liu, X.B. & Jones, E.G. Differences in quantal amplitude reflect GluR4-subunit number at corticothalamic synapses on two populations of thalamic neurons. Proc. Natl. Acad. Sci. USA 98, 4172–4177 (2001).

    Article  CAS  Google Scholar 

  14. Nagel, G. et al. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc. Natl. Acad. Sci. USA 100, 13940–13945 (2003).

    Article  CAS  Google Scholar 

  15. Boyden, E.S., Zhang, F., Bamberg, E., Nagel, G. & Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8, 1263–1268 (2005).

    Article  CAS  Google Scholar 

  16. Cardin, J.A. et al. Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature 459, 663–667 (2009).

    Article  CAS  Google Scholar 

  17. Petreanu, L., Huber, D., Sobczyk, A. & Svoboda, K. Channelrhodopsin-2-assisted circuit mapping of long-range callosal projections. Nat. Neurosci. 10, 663–668 (2007).

    Article  CAS  Google Scholar 

  18. Sohal, V.S., Zhang, F., Yizhar, O. & Deisseroth, K. Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature 459, 698–702 (2009).

    Article  CAS  Google Scholar 

  19. Cruikshank, S.J., Urabe, H., Nurmikko, A.V. & Connors, B.W. Pathway-specific feedforward circuits between thalamus and neocortex revealed by selective optical stimulation of axons. Neuron 65, 230–245 (2010).

    Article  CAS  Google Scholar 

  20. Beyer, B. et al. Absence seizures in C3H/HeJ and knockout mice caused by mutation of the AMPA receptor subunit Gria4. Hum. Mol. Genet. 17, 1738–1749 (2008).

    Article  CAS  Google Scholar 

  21. Bryant, A.S., Li, B., Beenhakker, M.P. & Huguenard, J.R. Maintenance of thalamic epileptiform activity depends on the astrocytic glutamate-glutamine cycle. J. Neurophysiol. 102, 2880–2888 (2009).

    Article  CAS  Google Scholar 

  22. Schofield, C.M., Kleiman-Weiner, M., Rudolph, U. & Huguenard, J.R. A gain in GABAA receptor synaptic strength in thalamus reduces oscillatory activity and absence seizures. Proc. Natl. Acad. Sci. USA 106, 7630–7635 (2009).

    Article  CAS  Google Scholar 

  23. Bernardo, K.L. & Woolsey, T.A. Axonal trajectories between mouse somatosensory thalamus and cortex. J. Comp. Neurol. 258, 542–564 (1987).

    Article  CAS  Google Scholar 

  24. Agmon, A., Yang, L.T., O'Dowd, D.K. & Jones, E.G. Organized growth of thalamocortical axons from the deep tier of terminations into layer IV of developing mouse barrel cortex. J. Neurosci. 13, 5365–5382 (1993).

    Article  CAS  Google Scholar 

  25. Pinault, D., Bourassa, J. & Deschênes, M. The axonal arborization of single thalamic reticular neurons in the somatosensory thalamus of the rat. Eur. J. Neurosci. 7, 31–40 (1995).

    Article  CAS  Google Scholar 

  26. Dittgen, T. et al. Lentivirus-based genetic manipulations of cortical neurons and their optical and electrophysiological monitoring in vivo. Proc. Natl. Acad. Sci. USA 101, 18206–18211 (2004).

    Article  CAS  Google Scholar 

  27. Lee, J.H. et al. Global and local fMRI signals driven by neurons defined optogenetically by type and wiring. Nature 465, 788–792 (2010).

    Article  CAS  Google Scholar 

  28. Bourassa, J., Pinault, D. & Deschênes, M. Corticothalamic projections from the cortical barrel field to the somatosensory thalamus in rats: a single-fibre study using biocytin as an anterograde tracer. Eur. J. Neurosci. 7, 19–30 (1995).

    Article  CAS  Google Scholar 

  29. Hoogland, P.V., Welker, E. & Van der Loos, H. Organization of the projections from barrel cortex to thalamus in mice studied with Phaseolus vulgaris-leucoagglutinin and HRP. Exp. Brain Res. 68, 73–87 (1987).

    Article  CAS  Google Scholar 

  30. Pinault, D. Cellular interactions in the rat somatosensory thalamocortical system during normal and epileptic 5–9 Hz oscillations. J. Physiol. (Lond.) 552, 881–905 (2003).

    Article  CAS  Google Scholar 

  31. Steriade, M. Sleep, epilepsy and thalamic reticular inhibitory neurons. Trends Neurosci. 28, 317–324 (2005).

    Article  CAS  Google Scholar 

  32. Paz, J.T., Chavez, M., Saillet, S., Deniau, J. & Charpier, S. Activity of ventral medial thalamic neurons during absence seizures and modulation of cortical paroxysms by the nigrothalamic pathway. J. Neurosci. 27, 929–941 (2007).

    Article  CAS  Google Scholar 

  33. Huguenard, J.R. & Prince, D.A. Intrathalamic rhythmicity studied in vitro: nominal T-current modulation causes robust antioscillatory effects. J. Neurosci. 14, 5485–5502 (1994).

    Article  CAS  Google Scholar 

  34. Bal, T., von Krosigk, M. & McCormick, D.A. Role of the ferret perigeniculate nucleus in the generation of synchronized oscillations in vitro. J. Physiol. (Lond.) 483, 665–685 (1995).

    Article  CAS  Google Scholar 

  35. Bal, T., Debay, D. & Destexhe, A. Cortical feedback controls the frequency and synchrony of oscillations in the visual thalamus. J. Neurosci. 20, 7478–7488 (2000).

    Article  CAS  Google Scholar 

  36. Blumenfeld, H. & McCormick, D.A. Corticothalamic inputs control the pattern of activity generated in thalamocortical networks. J. Neurosci. 20, 5153–5162 (2000).

    Article  CAS  Google Scholar 

  37. Mosbacher, J. et al. A molecular determinant for submillisecond desensitization in glutamate receptors. Science 266, 1059–1062 (1994).

    Article  CAS  Google Scholar 

  38. Geiger, J.R. et al. Relative abundance of subunit mRNAs determines gating and Ca2+ permeability of AMPA receptors in principal neurons and interneurons in rat CNS. Neuron 15, 193–204 (1995).

    Article  CAS  Google Scholar 

  39. Mineff, E.M. & Weinberg, R.J. Differential synaptic distribution of AMPA receptor subunits in the ventral posterior and reticular thalamic nuclei of the rat. Neuroscience 101, 969–982 (2000).

    Article  CAS  Google Scholar 

  40. Ohara, P.T. & Lieberman, A.R. The thalamic reticular nucleus of the adult rat: experimental anatomical studies. J. Neurocytol. 14, 365–411 (1985).

    Article  CAS  Google Scholar 

  41. Liu, X.B. & Jones, E.G. Predominance of corticothalamic synaptic inputs to thalamic reticular nucleus neurons in the rat. J. Comp. Neurol. 414, 67–79 (1999).

    Article  CAS  Google Scholar 

  42. Jones, E.G. & Powell, T.P. An electron microscopic study of the mode of termination of cortico-thalamic fibres within the sensory relay nuclei of the thalamus. Proc. R. Soc. Lond. B Biol. Sci. 172, 173–185 (1969).

    Article  CAS  Google Scholar 

  43. Liu, X.B., Warren, R.A. & Jones, E.G. Synaptic distribution of afferents from reticular nucleus in ventroposterior nucleus of cat thalamus. J. Comp. Neurol. 352, 187–202 (1995).

    Article  CAS  Google Scholar 

  44. Meeren, H.K.M., Pijn, J.P.M., Van Luijtelaar, E.L.J.M., Coenen, A.M.L. & Lopes da Silva, F.H. Cortical focus drives widespread corticothalamic networks during spontaneous absence seizures in rats. J. Neurosci. 22, 1480–1495 (2002).

    Article  CAS  Google Scholar 

  45. Polack, P.O. et al. Deep layer somatosensory cortical neurons initiate spike-and-wave discharges in a genetic model of absence seizures. J. Neurosci. 27, 6590–6599 (2007).

    Article  CAS  Google Scholar 

  46. Gentet, L.J. & Ulrich, D. Strong, reliable and precise synaptic connections between thalamic relay cells and neurones of the nucleus reticularis in juvenile rats. J. Physiol. (Lond.) 546, 801–811 (2003).

    Article  CAS  Google Scholar 

  47. Sherman, S.M. & Guillery, R.W. On the actions that one nerve cell can have on another: distinguishing “drivers” from “modulators”. Proc. Natl. Acad. Sci. USA 95, 7121–7126 (1998).

    Article  CAS  Google Scholar 

  48. Paz, J.T., Christian, C.A., Parada, I., Prince, D.A. & Huguenard, J.R. Focal cortical infarcts alter intrinsic excitability and synaptic excitation in the reticular thalamic nucleus. J. Neurosci. 30, 5465–5479 (2010).

    Article  CAS  Google Scholar 

  49. Dobrunz, L.E. & Stevens, C.F. Heterogeneity of release probability, facilitation, and depletion at central synapses. Neuron 18, 995–1008 (1997).

    Article  CAS  Google Scholar 

  50. Wong-Riley, M.T. Endogenous perioxidatic activity in brain stem neurons as demonstrated by their staining with diaminobenzidine in normal squirrel monkeys. Brain Res. 108, 257–277 (1976).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank I. Parada for her expert histology technical support and A. Herbert and S. Jin for their help with animal husbandry. We also thank T. Davidson for insightful discussions on the optogenetic approach and C. Lee for a generous help during virus injections. This work was supported by grants from the US National Institutes of Health and the National Institute of Neurological Disorders and Stroke (NS34774, NS06477 and NS031348), the DARPA REPAIR program and the Epilepsy Foundation.

Author information

Authors and Affiliations

Authors

Contributions

J.T.P. and J.R.H. designed the experiments and wrote the manuscript. L.F., O.Y., K.D. and W.N.F. provided reagents and tools. J.T.P., A.S.B. and K.P. carried out the experiments. J.T.P., A.S.B., K.P. and J.R.H. analyzed the data.

Corresponding author

Correspondence to John R Huguenard.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Table 1 (PDF 928 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paz, J., Bryant, A., Peng, K. et al. A new mode of corticothalamic transmission revealed in the Gria4−/− model of absence epilepsy. Nat Neurosci 14, 1167–1173 (2011). https://doi.org/10.1038/nn.2896

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2896

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing