Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Sparse, decorrelated odor coding in the mushroom body enhances learned odor discrimination

Abstract

Sparse coding may be a general strategy of neural systems for augmenting memory capacity. In Drosophila melanogaster, sparse odor coding by the Kenyon cells of the mushroom body is thought to generate a large number of precisely addressable locations for the storage of odor-specific memories. However, it remains untested how sparse coding relates to behavioral performance. Here we demonstrate that sparseness is controlled by a negative feedback circuit between Kenyon cells and the GABAergic anterior paired lateral (APL) neuron. Systematic activation and blockade of each leg of this feedback circuit showed that Kenyon cells activated APL and APL inhibited Kenyon cells. Disrupting the Kenyon cell–APL feedback loop decreased the sparseness of Kenyon cell odor responses, increased inter-odor correlations and prevented flies from learning to discriminate similar, but not dissimilar, odors. These results suggest that feedback inhibition suppresses Kenyon cell activity to maintain sparse, decorrelated odor coding and thus the odor specificity of memories.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Feedback inhibition of Kenyon cell responses by Kenyon cell output.
Figure 2: Feedback is from all Kenyon cells to all Kenyon cells.
Figure 3: Kenyon cells activate APL.
Figure 4: APL inhibits Kenyon cells.
Figure 5: Inhibition keeps Kenyon cell responses sparse and distinct.
Figure 6: APL sparsens and decorrelates Kenyon cell responses.
Figure 7: Feedback inhibition facilitates learned discrimination of similar, but not dissimilar, odors.
Figure 8: Partial effect of APL-specific RNAi of GABA biosynthesis.

Similar content being viewed by others

References

  1. Kanerva, P. Sparse Distributed Memory (MIT Press, 1988).

  2. Marr, D. A theory of cerebellar cortex. J. Physiol. (Lond.) 202, 437–470 (1969).

    Article  CAS  Google Scholar 

  3. Albus, J.S. A theory of cerebellar function. Math. Biosci. 10, 25–61 (1971).

    Article  Google Scholar 

  4. Treves, A. & Rolls, E.T. What determines the capacity of autoassociative memories in the brain? Network 2, 371–397 (1991).

    Article  Google Scholar 

  5. Vinje, W.E. & Gallant, J.L. Sparse coding and decorrelation in primary visual cortex during natural vision. Science 287, 1273–1276 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Hromádka, T., Deweese, M.R. & Zador, A.M. Sparse representation of sounds in the unanesthetized auditory cortex. PLoS Biol. 6, e16 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Crochet, S., Poulet, J.F.A., Kremer, Y. & Petersen, C.C.H. Synaptic mechanisms underlying sparse coding of active touch. Neuron 69, 1160–1175 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Perez-Orive, J. et al. Oscillations and sparsening of odor representations in the mushroom body. Science 297, 359–365 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Ito, I., Ong, R.C.-Y., Raman, B. & Stopfer, M. Sparse odor representation and olfactory learning. Nat. Neurosci. 11, 1177–1184 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Stettler, D.D. & Axel, R. Representations of odor in the piriform cortex. Neuron 63, 854–864 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Poo, C. & Isaacson, J.S. Odor representations in olfactory cortex: 'sparse' coding, global inhibition, and oscillations. Neuron 62, 850–861 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Honegger, K.S., Campbell, R.A.A. & Turner, G.C. Cellular-resolution population imaging reveals robust sparse coding in the Drosophila mushroom body. J. Neurosci. 31, 11772–11785 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jortner, R.A., Farivar, S.S. & Laurent, G. A simple connectivity scheme for sparse coding in an olfactory system. J. Neurosci. 27, 1659–1669 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Luo, S.X., Axel, R. & Abbott, L.F. Generating sparse and selective third-order responses in the olfactory system of the fly. Proc. Natl. Acad. Sci. USA 107, 10713–10718 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Papadopoulou, M., Cassenaer, S., Nowotny, T. & Laurent, G. Normalization for sparse encoding of odors by a wide-field interneuron. Science 332, 721–725 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lei, Z., Chen, K., Li, H., Liu, H. & Guo, A. The GABA system regulates the sparse coding of odors in the mushroom bodies of Drosophila. Biochem. Biophys. Res. Commun. 436, 35–40 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Bhandawat, V., Olsen, S.R., Gouwens, N.W., Schlief, M.L. & Wilson, R.I. Sensory processing in the Drosophila antennal lobe increases reliability and separability of ensemble odor representations. Nat. Neurosci. 10, 1474–1482 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Turner, G.C., Bazhenov, M. & Laurent, G. Olfactory representations by Drosophila mushroom body neurons. J. Neurophysiol. 99, 734–746 (2008).

    PubMed  Google Scholar 

  19. Heisenberg, M. Mushroom body memoir: from maps to models. Nat. Rev. Neurosci. 4, 266–275 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Franks, K.M. et al. Recurrent circuitry dynamically shapes the activation of piriform cortex. Neuron 72, 49–56 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kapfer, C., Glickfeld, L.L., Atallah, B.V. & Scanziani, M. Supralinear increase of recurrent inhibition during sparse activity in the somatosensory cortex. Nat. Neurosci. 10, 743–753 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ng, M. et al. Transmission of olfactory information between three populations of neurons in the antennal lobe of the fly. Neuron 36, 463–474 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Kitamoto, T. Conditional modification of behavior in Drosophila by targeted expression of a temperature-sensitive shibire allele in defined neurons. J. Neurobiol. 47, 81–92 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Lima, S.Q. & Miesenböck, G. Remote control of behavior through genetically targeted photostimulation of neurons. Cell 121, 141–152 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Hamada, F.N. et al. An internal thermal sensor controlling temperature preference in Drosophila. Nature 454, 217–220 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tully, T. & Quinn, W.G. Classical conditioning and retention in normal and mutant Drosophila melanogaster. J. Comp. Physiol. A 157, 263–277 (1985).

    Article  CAS  PubMed  Google Scholar 

  27. Claridge-Chang, A. et al. Writing memories with light-addressable reinforcement circuitry. Cell 139, 405–415 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Thum, A.S. et al. Differential potencies of effector genes in adult Drosophila. J. Comp. Neurol. 498, 194–203 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Sweeney, S.T., Broadie, K., Keane, J., Niemann, H. & O'Kane, C.J. Targeted expression of tetanus toxin light chain in Drosophila specifically eliminates synaptic transmission and causes behavioral defects. Neuron 14, 341–351 (1995).

    Article  CAS  PubMed  Google Scholar 

  30. Aso, Y. et al. The mushroom body of adult Drosophila characterized by GAL4 drivers. J. Neurogenet. 23, 156–172 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Hu, A., Zhang, W. & Wang, Z. Functional feedback from mushroom bodies to antennal lobes in the Drosophila olfactory pathway. Proc. Natl. Acad. Sci. USA 107, 10262–10267 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Markopoulos, F., Rokni, D., Gire, D.H. & Murthy, V.N. Functional properties of cortical feedback projections to the olfactory bulb. Neuron 76, 1175–1188 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Boyd, A.M., Sturgill, J.F., Poo, C. & Isaacson, J.S. Cortical feedback control of olfactory bulb circuits. Neuron 76, 1161–1174 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu, X. & Davis, R.L. The GABAergic anterior paired lateral neuron suppresses and is suppressed by olfactory learning. Nat. Neurosci. 12, 53–59 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Pitman, J.L. et al. A pair of inhibitory neurons are required to sustain labile memory in the Drosophila mushroom body. Curr. Biol. 21, 855–861 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu, X., Krause, W.C. & Davis, R.L. GABAA receptor RDL inhibits Drosophila olfactory associative learning. Neuron 56, 1090–1102 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wu, Y., Ren, Q., Li, H. & Guo, A. The GABAergic anterior paired lateral neurons facilitate olfactory reversal learning in Drosophila. Learn. Mem. 19, 478–486 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Ren, Q., Li, H., Wu, Y., Ren, J. & Guo, A. A GABAergic inhibitory neural circuit regulates visual reversal learning in Drosophila. J. Neurosci. 32, 11524–11538 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wilson, R.I. & Laurent, G. Role of GABAergic inhibition in shaping odor-evoked spatiotemporal patterns in the Drosophila antennal lobe. J. Neurosci. 25, 9069–9079 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hallem, E.A. & Carlson, J.R. Coding of odors by a receptor repertoire. Cell 125, 143–160 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Campbell, R.A.A. et al. Imaging a population code for odor identity in the Drosophila mushroom body. J. Neurosci. 33, 10568–10581 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Stopfer, M., Bhagavan, S., Smith, B.H. & Laurent, G. Impaired odour discrimination on desynchronization of odour-encoding neural assemblies. Nature 390, 70–74 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. Abraham, N.M. et al. Synaptic inhibition in the olfactory bulb accelerates odor discrimination in mice. Neuron 65, 399–411 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Olsen, S.R., Bhandawat, V. & Wilson, R.I. Divisive normalization in olfactory population codes. Neuron 66, 287–299 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mishra, D., Louis, M. & Gerber, B. Adaptive adjustment of the generalization-discrimination balance in larval Drosophila. J. Neurogenet. 24, 168–175 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. Dietzl, G. et al. A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature 448, 151–156 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Wu, C.-L. et al. Heterotypic gap junctions between two neurons in the Drosophila brain are critical for memory. Curr. Biol. 21, 848–854 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. Keene, A.C. et al. Diverse odor-conditioned memories require uniquely timed dorsal paired medial neuron output. Neuron 44, 521–533 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Gupta, N. & Stopfer, M. Functional analysis of a higher olfactory center, the lateral horn. J. Neurosci. 32, 8138–8148 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Assisi, C., Stopfer, M., Laurent, G. & Bazhenov, M. Adaptive regulation of sparseness by feedforward inhibition. Nat. Neurosci. 10, 1176–1184 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Pfeiffer, B.D., Truman, J.W. & Rubin, G.M. Using translational enhancers to increase transgene expression in Drosophila. Proc. Natl. Acad. Sci. USA 109, 6626–6631 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Thistle, R., Cameron, P., Ghorayshi, A., Dennison, L. & Scott, K. Contact chemoreceptors mediate male-male repulsion and male-female attraction during Drosophila courtship. Cell 149, 1140–1151 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Connolly, J.B. et al. Associative learning disrupted by impaired Gs signaling in Drosophila mushroom bodies. Science 274, 2104–2107 (1996).

    Article  CAS  PubMed  Google Scholar 

  54. McGuire, S.E., Le, P.T., Osborn, A.J., Matsumoto, K. & Davis, R.L. Spatiotemporal rescue of memory dysfunction in Drosophila. Science 302, 1765–1768 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Miesenböck, G., De Angelis, D.A. & Rothman, J.E. Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394, 192–195 (1998).

    Article  PubMed  Google Scholar 

  56. Burke, C.J. et al. Layered reward signalling through octopamine and dopamine in Drosophila. Nature 492, 433–437 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Awasaki, T., Huang, Y., O'Connor, M.B. & Lee, T. Glia instruct developmental neuronal remodeling through TGF-β signaling. Nat. Neurosci. 14, 821–823 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Thum, A.S., Jenett, A., Ito, K., Heisenberg, M. & Tanimoto, H. Multiple memory traces for olfactory reward learning in Drosophila. J. Neurosci. 27, 11132–11138 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Jenett, A. et al. A GAL4-driver line resource for Drosophila neurobiology. Cell Reports 2, 991–1001 (2012).

    Article  CAS  PubMed  Google Scholar 

  60. Gao, S. et al. The neural substrate of spectral preference in Drosophila. Neuron 60, 328–342 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gordon, M.D. & Scott, K. Motor control in a Drosophila taste circuit. Neuron 61, 373–384 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hong, W. et al. Leucine-rich repeat transmembrane proteins instruct discrete dendrite targeting in an olfactory map. Nat. Neurosci. 12, 1542–1550 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Riemensperger, T., Völler, T., Stock, P., Buchner, E. & Fiala, A. Punishment prediction by dopaminergic neurons in Drosophila. Curr. Biol. 15, 1953–1960 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Kakihara, K., Shinmyozu, K., Kato, K., Wada, H. & Hayashi, S. Conversion of plasma membrane topology during epithelial tube connection requires Arf-like 3 small GTPase in Drosophila. Mech. Dev. 125, 325–336 (2008).

    Article  CAS  PubMed  Google Scholar 

  65. Tian, L. et al. Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat. Methods 6, 875–881 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Shang, Y., Claridge-Chang, A., Sjulson, L., Pypaert, M. & Miesenböck, G. Excitatory local circuits and their implications for olfactory processing in the fly antennal lobe. Cell 128, 601–612 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Willmore, B. & Tolhurst, D.J. Characterizing the sparseness of neural codes. Network 12, 255–270 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Parnas and S. DasGupta for discussions; Y. Tan, R. Roorda, C. Talbot and J. Beevers for technical assistance; L. Looger (Janelia Farm Research Campus) for a plasmid encoding GCaMP3; and S. Goodwin (University of Oxford), C.-H. Lee (US National Institutes of Health), L. Luo (Stanford University), K. Scott (University of California, Berkeley), S. Waddell (University of Oxford), the Bloomington Stock Center, the Kyoto Drosophila Genetic Resource Center and the Vienna Drosophila RNAi Center for fly strains. This work was supported by grants from the Wellcome Trust (090309/Z/09/Z; G.M.), the Gatsby Charitable Foundation (G.M.), the UK Medical Research Council (G0700888; G.M.), the US National Institutes of Health (R01DA030601; G.M.), the Oxford Martin School (G.M.), the Howard Hughes Medical Institute (T.L.), a Sir Henry Wellcome Postdoctoral Fellowship (089021/Z/09/Z; A.C.L.) and a Wellcome Trust OXION studentship (A.M.B.).

Author information

Authors and Affiliations

Authors

Contributions

A.C.L. and G.M. designed the study, analyzed the results and wrote the paper. A.C.L. performed all behavioral and imaging experiments. A.M.B. assisted with behavioral experiments and dissections and A.d.C. with dissections. T.L. provided lexAop-shits1 and mb247-LexA flies.

Corresponding author

Correspondence to Gero Miesenböck.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 GAL4 driver lines labeling α'β' and γ Kenyon cells.

(a,b) Maximum intensity z-projections of confocal image stacks. (a) γ Kenyon cells are labeled in R64C08-GAL4/UAS-CD8::GFP flies. (b) α'β' Kenyon cells are labeled in R35B12-GAL4/UAS-CD8::GFP flies. Scale bars, 50 μm. Representative images selected from at least 3 dissected brains.

Supplementary Figure 2 Intersectional strategy allows specific labeling of APL neurons with insertions of tubP-FRT-GAL80-FRT on chromosomes II and III.

(a) Anterior view of GFP expression in NP2631-GAL4, GH146-Flp/tubP-FRT-GAL80-FRT,UAS-CD8::GFP; UAS-shits1/+ fly with both APL neurons labeled. (b) Anterior view of GFP expression in NP2631-GAL4, GH146-Flp/UAS-CD8::GFP; tubP-FRT-GAL80-FRT/+ fly with both APL neurons labeled. Scale bars, 50 μm. Representative images selected from 10 (a) and 5 (b) confocal stacks and nearly 700 brains dissected (see Fig. 6).

Supplementary Figure 3 APL inhibits Kenyon cells in all lobes.

(a-d) Impact of different APL manipulations (rows) on odor-evoked Ca2+ influx in different mushroom body lobes (columns). Black bars indicate 5 s pulses of ethyl acetate. (a) In control hemispheres of APL>shits1 flies where APL was unlabeled, odor-evoked Ca2+ influx in Kenyon cells declined slightly at 32 °C. (b) In hemispheres of APL>dTRPA1 flies where APL was labeled, odor-evoked Ca2+ influx in Kenyon cells was almost completely abolished at 32 °C. (c) In hemispheres of APL>shits1 flies where APL was labeled, odor-evoked Ca2+ influx in Kenyon cells increased greatly at 32 °C. (d) In APL-labeled hemispheres of APL>TeTx flies (red), odor-evoked Ca2+ influx in Kenyon cells was much higher than in APL-labeled hemispheres of APL>TeTx-inactive flies (blue). (e-h) Bar graphs summarizing maximum ΔF/F from (a-d) and including data after recovery to 22 °C after heating (e-g) and hemispheres from APL>TeTx flies where APL was unlabeled (green bars, h). n, left to right, given as number of brain hemispheres [number of flies]: (e) n=24 [17] (α and α'); 7 [6] (β, β', γ) (f) n=9 [5], 8 [5]. (g) n=30 [21] (α and α'); 15 [10] (β, β', γ). (h) n=9 [7], 10 [8], 7 [6] (α and α'); 10 [6], 7 [6] (β, β', γ). (i) Ratios of odor-evoked Ca2+ influx at 32 °C vs. 22 °C, corresponding to panels e-h. Error bars show s.e.m. * P<0.05, ** P<0.01, *** P<0.001, repeated-measures ANOVA with Geisser-Greenhouse correction and Holm-Sidak multiple comparisons test (e,f – α, g – α', β, β', γ), Friedman test with Dunn's multiple comparisons test (f – α', g – α), one-way ANOVA with Tukey-Kramer post hoc test (h – α, α'), unpaired Welch t-test (h,i – β, β', γ) or Mann-Whitney U test (i – α, α'). See Supplementary Table 1 for full genotypes.

Supplementary Figure 4 Kenyon cell expression of TeTx is required for the effect of OK107>TeTx on sparse coding.

(a) Activity maps of odor responses in OK107>TeTx, mb247-LexA>GCaMP3,GAL80 flies (left, n = 7 [5]) and OK107>TeTx, mb247-LexA>GCaMP3 (right, n = 6 [6]). Color-coded correlation matrices as in Fig. 5a,b. Scale bars, 10 μm. n given as number of hemispheres [number of flies]. (b, c) Removing Kenyon cell expression with mb247-LexA>GAL80 increases the population sparseness (b) and decreases the inter-odor correlations (c) of activity maps of odor responses in flies carrying OK107>TeTx. * P < 0.05, unpaired Welch t-test. See Supplementary Table 1 for full genotypes.

Supplementary Figure 5 Blocking APL synaptic output affects Kenyon cell responses to broad odors more than Kenyon cell responses to narrow odors.

ΔF/F traces and maximum ΔF/F data corresponding to the ratios in Fig. 6a. Shading on traces indicates s.e.m. Black bars indicate 5-s pulses of δ-DL, IA:EB 1:4, or IA:EB 4:1 as labeled. * P < 0.05, ** P < 0.01, *** P < 0.001, repeated-measures ANOVA with Geisser-Greenhouse correction and Holm-Sidak multiple comparisons test. n = 12 [8] (APL>shits1 labeled), n = 6-7 [5] (APL>shits1unlabeled). n given as number of hemispheres [number of flies].

Supplementary Figure 6 Learned odor discrimination of flies with only one APL neuron labeled and with OCT vs. MCH.

(a) Learned odor discrimination of 3-octanol (OCT) vs. 4-methylcyclohexanol (MCH). Protocol was as in Fig. 7a except the CS+ was OCT and the CS– was MCH. n, left to right, given as number of flies [number of experiments]: 29 [6], 14 [6], 19 [6], 41 [6], 25 [6], 18 [6], 16 [6], 32 [6]. Kruskal-Wallis ANOVA reveals no significant differences between the 8 groups (P = 0.09). 2-way ANOVA reveals a main effect of temperature (P < 0.05) but no significant interaction between genotype and temperature across flies with neither, left, right, or both APL neurons labeled (P = 0.52) or comparing flies with neither or both APL neurons labeled (P = 0.82). (b) Data as in Fig. 7c, adding single-APL-labeled flies. CS+ was IA:EB 4:1 and CS– was δ-DL (‘dissimilar’) or IA:EB 1:4 (‘similar’). At 32 °C, flies with only the left or right APL labeled by shits1 are somewhat impaired on learned discrimination of similar odors compared to flies with neither APL labeled, but the difference is not statistically significant. n, left to right, given as number of flies [number of experiments]: 23 [6], 28 [6], 19 [6], 26 [6], 16 [7], 32 [7], 34 [7], 44 [7], 18 [8], 30 [8], 22 [8], 55 [8], 32 [9], 33 [9], 37 [9], 51 [9]. * P < 0.05, ** P < 0.01, *** P < 0.001, Kruskal-Wallis ANOVA with Holm-Bonferroni correction for post hoc tests, testing only pairs of data points with one variable changed (task, temperature, and APL labeling). P < 0.05, 3-way ANOVA for interaction of task, temperature, and APL labeling. P < 0.01, 2-way ANOVA for interaction of genotype and temperature for discrimination of similar odors. P < 0.05, 2-way ANOVA for interaction of task and APL labeling at 32 °C. P < 0.05, 2-way ANOVA for interaction of task and temperature for flies with both APL neurons or the left APL neuron labeled. Other 2-way ANOVAs did not reveal any significant interactions. Error bars show s.e.m.

Supplementary Figure 7 RNAi knockdown of GABA biosynthesis in the APL neuron causes only partial effects on Kenyon cell odor responses.

(a–d) See grid at bottom for full genotypes. (a) α' lobe responses to ethyl acetate. (b) a lobe responses to ethyl acetate. (a,b) n, left to right, given as number of brain hemispheres [number of flies]: 25 [17], 30 [21], 9 [7], 10 [8], 21 [19], 22 [19], 10, 11, 6, 6. n given as number of hemispheres [number of flies]. (c) Mean population sparseness of cell body responses to the panel of odors used in Fig. 5. (d) Mean inter-odor correlations between cell body responses for the panel of odors used in Fig. 5. (c,d) n, left to right, given as number of brain hemispheres [number of flies]: 7 [7], 8 [7], 9 [7], 9 [7], 8 [8], 10 [8], 10, 11, 5, 5. (e) Sample activity maps of cell body responses analyzed in panels c and d. Compare to Fig. 5a,b. Scale bars, 10 μm. Color grids represent pairwise correlations as in Fig. 5: 1) ethyl acetate, 2) 3-octanol, 3) butyl acetate, 4) isoamyl acetate, 5) ethyl butyrate, 6) 2-pentanol, 7) 4-methylcyclohexanol. * P < 0.05, ** P < 0.01, *** P < 0.001 significant difference between colored bars and the relevant controls (gray bars), by unpaired Welch t-test for APL>shits1 and APL>GADRNAi and by Kruskal-Wallis ANOVA and Dunn’s multiple comparisons test for GH146 and NP2631 driving GADRNAi. § P < 0.05 significant difference between effect of GADRNAi and effect of APL>shits1 by 2-way ANOVA. † P < 0.05 significant difference between effect of manipulation marked with † and effect of APL>TeTx by 2-way ANOVA. # P < 0.05 significant difference between effect of manipulation marked with # and effect of APL>GADRNAi by 2-way ANOVA. Error bars show s.e.m.

Supplementary Figure 8 RNAi knockdown of GABA biosynthesis in the APL neuron does not affect sparseness or correlation of Kenyon cell responses to MCH or OCT.

(a-c) See grid at bottom for full genotypes. (a) Population sparseness of cell body responses to 4-methylcyclohexanol (MCH). Statistical comparisons, left to right: Mann-Whitney U test (P = 0.094), unpaired Welch t-test (P = 0.50), one-way ANOVA (P = 0.48). (b) Population sparseness of cell body responses to 3-octanol (OCT). Statistical comparisons: Mann-Whitney U test (P = 0.054), unpaired Welch t-test (P = 0.49), Kruskal-Wallis ANOVA (P = 0.41). (c) Correlation between cell body responses to MCH and OCT. Statistical comparisons: unpaired Welch t-test (P = 0.10), Mann-Whitney U test (P = 0.75), Kruskal-Wallis ANOVA (P = 0.34). n, left to right, given as number of brain hemispheres [number of flies]: 7 [7], 8 [7], 8 [8], 10 [8], 10, 11, 5, 5. Error bars show s.e.m.

Supplementary information

Supplementary Text and Figures

Supplementary Figues 1–8 and Supplementary Table 1 (PDF 5665 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, A., Bygrave, A., de Calignon, A. et al. Sparse, decorrelated odor coding in the mushroom body enhances learned odor discrimination. Nat Neurosci 17, 559–568 (2014). https://doi.org/10.1038/nn.3660

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3660

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing