Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Filling-in of visual phantoms in the human brain

Abstract

The constructive nature of perception can be demonstrated under viewing conditions that lead to vivid subjective impressions in the absence of direct input. When a low-contrast moving grating is divided by a large gap, observers report seeing a 'visual phantom' of the real grating extending through the blank gap region. Here, we report fMRI evidence showing that visual phantoms lead to enhanced activity in early visual areas that specifically represent the blank gap region. We found that neural filling-in effects occurred automatically in areas V1 and V2, regardless of where the subject attended. Moreover, when phantom-inducing gratings were paired with competing stimuli in a binocular rivalry display, subjects reported spontaneous fluctuations in conscious perception of the phantom accompanied by tightly coupled changes in early visual activity. Our results indicate that phantom visual experiences are closely linked to automatic filling-in of activity at the earliest stages of cortical processing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental design and stimuli.
Figure 2: Average fMRI time courses for retinotopic regions corresponding to the blank gap in areas V1 and V2, plotted as a function of grating orientation and attentional task (n = 8).
Figure 3: Magnitude of responses to visual phantoms.
Figure 4: Attentional modulation effects across visual areas.
Figure 5: Event-related activity for reported percepts of phantom (black solid lines) or no phantom (gray dashed lines) during rivalry and stimulus alternation.
Figure 6: Comparison of response amplitudes for rivalry (ordinate) and stimulus alternation (abscissa) for reported percepts of phantom (positive points) or no phantom (negative points).

Similar content being viewed by others

References

  1. Tynan, P. & Sekuler, R. Moving visual phantoms: a new contour completion effect. Science 188, 951–952 (1975).

    Article  CAS  Google Scholar 

  2. Weisstein, N., Maguire, W. & Berbaum, K. Phantom-motion aftereffect. Science 198, 955–958 (1977).

    Article  CAS  Google Scholar 

  3. Kastner, S., Pinsk, M.A., De Weerd, P., Desimone, R. & Ungerleider, L.G. Increased activity in human visual cortex during directed attention in the absence of visual stimulation. Neuron 22, 751–761 (1999).

    Article  CAS  Google Scholar 

  4. Ress, D., Backus, B.T. & Heeger, D.J. Activity in primary visual cortex predicts performance in a visual detection task. Nat. Neurosci. 3, 940–945 (2000).

    Article  CAS  Google Scholar 

  5. Ramachandran, V.S. Filling in the blind spot. Nature 356, 115 (1992).

    Article  CAS  Google Scholar 

  6. Rauschenberger, R. & Yantis, S. Masking unveils pre-amodal completion representation in visual search. Nature 410, 369–372 (2001).

    Article  CAS  Google Scholar 

  7. Sereno, M.I. et al. Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science 268, 889–893 (1995).

    Article  CAS  Google Scholar 

  8. DeYoe, E.A. et al. Mapping striate and extrastriate visual areas in human cerebral cortex. Proc. Natl. Acad. Sci. USA 93, 2382–2386 (1996).

    Article  CAS  Google Scholar 

  9. Engel, S.A., Glover, G.H. & Wandell, B.A. Retinotopic organization in human visual cortex and the spatial precision of functional MRI. Cereb. Cortex 7, 181–192 (1997).

    Article  CAS  Google Scholar 

  10. Somers, D.C., Dale, A.M., Seiffert, A.E. & Tootell, R.B. Functional MRI reveals spatially specific attentional modulation in human primary visual cortex. Proc. Natl. Acad. Sci. USA 96, 1663–1668 (1999).

    Article  CAS  Google Scholar 

  11. Shmuel, A. et al. Sustained negative BOLD, blood flow and oxygen consumption response and its coupling to the positive response in the human brain. Neuron 36, 1195–1210 (2002).

    Article  CAS  Google Scholar 

  12. Polat, U., Mizobe, K., Pettet, M.W., Kasamatsu, T. & Norcia, A.M. Collinear stimuli regulate visual responses depending on cell's contrast threshold. Nature 391, 580–584 (1998).

    Article  CAS  Google Scholar 

  13. Kapadia, M.K., Ito, M., Gilbert, C.D. & Westheimer, G. Improvement in visual sensitivity by changes in local context: parallel studies in human observers and in V1 of alert monkeys. Neuron 15, 843–856 (1995).

    Article  CAS  Google Scholar 

  14. Levelt, W.J. On Binocular Rivalry (Institute of Perception Rvo-Tno, Soesterberg, The Netherlands, 1965).

    Google Scholar 

  15. Tong, F., Nakayama, K., Vaughan, J.T. & Kanwisher, N. Binocular rivalry and visual awareness in human extrastriate cortex. Neuron 21, 753–759 (1998).

    Article  CAS  Google Scholar 

  16. Polonsky, A., Blake, R., Braun, J. & Heeger, D.J. Neuronal activity in human primary visual cortex correlates with perception during binocular rivalry. Nat. Neurosci. 3, 1153–1159 (2000).

    Article  CAS  Google Scholar 

  17. Tong, F. & Engel, S.A. Interocular rivalry revealed in the human cortical blind-spot representation. Nature 411, 195–199 (2001).

    Article  CAS  Google Scholar 

  18. Lee, S.H., Blake, R. & Heeger, D.J. Traveling waves of activity in primary visual cortex during binocular rivalry. Nat. Neurosci. 8, 22–23 (2005).

    Article  CAS  Google Scholar 

  19. Lamme, V.A. Why visual attention and awareness are different. Trends Cogn. Sci. 7, 12–18 (2003).

    Article  Google Scholar 

  20. Tong, F. Primary visual cortex and visual awareness. Nat. Rev. Neurosci. 4, 219–229 (2003).

    Article  CAS  Google Scholar 

  21. Baars, B.J. The conscious access hypothesis: origins and recent evidence. Trends Cogn. Sci. 6, 47–52 (2002).

    Article  Google Scholar 

  22. Rees, G., Kreiman, G. & Koch, C. Neural correlates of consciousness in humans. Nat. Rev. Neurosci. 3, 261–270 (2002).

    Article  CAS  Google Scholar 

  23. Dennett, D.C. Consciousness Explained (Little Brown, Boston, 1991).

    Google Scholar 

  24. Ramachandran, V.S. Filling in gaps in logic: reply to Durgin et al. Perception 24, 841–845 (1995).

    Article  CAS  Google Scholar 

  25. Durgin, F.H., Tripathy, S.P. & Levi, D.M. On the filling in of the visual blind spot: some rules of thumb. Perception 24, 827–840 (1995).

    Article  CAS  Google Scholar 

  26. Pessoa, L., Thompson, E. & Noe, A. Finding out about filling-in: a guide to perceptual completion for visual science and the philosophy of perception. Behav. Brain Sci. 21, 723–748 (1998).

    CAS  PubMed  Google Scholar 

  27. Ramachandran, V.S. & Gregory, R.L. Perceptual filling in of artificially induced scotomas in human vision. Nature 350, 699–702 (1991).

    Article  CAS  Google Scholar 

  28. Ramachandran, V.S., Rogers-Ramachandran, D. & Stewart, M. Perceptual correlates of massive cortical reorganization. Science 258, 1159–1160 (1992).

    Article  CAS  Google Scholar 

  29. Shams, L., Kamitani, Y. & Shimojo, S. Illusions. What you see is what you hear. Nature 408, 788 (2000).

    Article  CAS  Google Scholar 

  30. Chen, L.M., Friedman, R.M. & Roe, A.W. Optical imaging of a tactile illusion in area 3b of the primary somatosensory cortex. Science 302, 881–885 (2003).

    Article  CAS  Google Scholar 

  31. Paradiso, M.A. & Nakayama, K. Brightness perception and filling-in. Vision Res. 31, 1221–1236 (1991).

    Article  CAS  Google Scholar 

  32. Kaas, J.H. et al. Reorganization of retinotopic cortical maps in adult mammals after lesions of the retina. Science 248, 229–231 (1990).

    Article  CAS  Google Scholar 

  33. Gilbert, C.D. & Wiesel, T.N. Receptive field dynamics in adult primary visual cortex. Nature 356, 150–152 (1992).

    Article  CAS  Google Scholar 

  34. Fiorani, M. Jr., Rosa, M.G.P., Gattass, R. & Rocha-Miranda, C.E. Dynamic surrounds of receptive fields in primate striate cortex: A physiological basis for perceptual completion? Proc. Natl. Acad. Sci. USA 89, 8547–8551 (1992).

    Article  Google Scholar 

  35. Komatsu, H., Kinoshita, M. & Murakami, I. Neural responses in the retinotopic representation of the blind spot in the macaque V1 to stimuli for perceptual filling-in. J. Neurosci. 20, 9310–9319 (2000).

    Article  CAS  Google Scholar 

  36. von der Heydt, R., Peterhans, E. & Baumgartner, G. Illusory contours and cortical neuron responses. Science 224, 1260–1262 (1984).

    Article  CAS  Google Scholar 

  37. De Weerd, P., Gattass, R., Desimone, R. & Ungerleider, L.G. Responses of cells in monkey visual cortex during perceptual filling-in of an artificial scotoma. Nature 377, 731–734 (1995).

    Article  CAS  Google Scholar 

  38. Sasaki, Y. & Watanabe, T. The primary visual cortex fills in color. Proc. Natl. Acad. Sci. USA 101, 18251–18256 (2004).

    Article  CAS  Google Scholar 

  39. Stettler, D.D., Das, A., Bennett, J. & Gilbert, C.D. Lateral connectivity and contextual interactions in macaque primary visual cortex. Neuron 36, 739–750 (2002).

    Article  CAS  Google Scholar 

  40. Shmuel, A. et al. Retinotopic axis specificity and selective clustering of feedback projections from V2 to V1 in the owl monkey. J. Neurosci. 25, 2117–2131 (2005).

    Article  CAS  Google Scholar 

  41. Angelucci, A. et al. Circuits for local and global signal integration in primary visual cortex. J. Neurosci. 22, 8633–8646 (2002).

    Article  CAS  Google Scholar 

  42. Blake, R. & Logothetis, N.K. Visual competition. Nat. Rev. Neurosci. 3, 13–21 (2002).

    Article  CAS  Google Scholar 

  43. Gyoba, J. Disappearance of stationary visual phantoms under high luminant or equiluminant inducing gratings. Vision Res. 34, 1001–1005 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Y. Kamitani, Y. Sasaki and A. Seiffert for comments on earlier versions of this manuscript, and the Center for the Study of Brain, Mind and Behavior, Princeton University, for MRI support. This work was supported by grant R01 EY14202 from the US National Institutes of Health to F.T.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Meng.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Movie 1

Demonstration of a moving visual phantom. (MOV 319 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meng, M., Remus, D. & Tong, F. Filling-in of visual phantoms in the human brain. Nat Neurosci 8, 1248–1254 (2005). https://doi.org/10.1038/nn1518

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1518

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing