Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Rapid learning in cortical coding of visual scenes

Abstract

Experience-dependent plasticity in adult visual cortex is believed to have important roles in visual coding and perceptual learning. Here we show that repeated stimulation with movies of natural scenes induces a rapid improvement in response reliability in cat visual cortex, whereas stimulation with white noise or flashed bar stimuli does not. The improved reliability can be accounted for by a selective increase in spiking evoked by preferred stimuli, and the magnitude of improvement depends on the sparseness of the response. The increase in reliability persists for at least several minutes in the absence of further movie stimulation. During this period, spontaneous spiking activity shows detectable reverberation of the movie-evoked responses. Thus, repeated exposure to natural stimuli not only induces a rapid improvement in cortical response reliability, but also leaves a 'memory trace' in subsequent spontaneous activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Improvement in cortical response reliability over repeated trials of natural movie.
Figure 2: Improvement in response reliability is specific to natural stimuli.
Figure 3: Selective increase in spiking induced by natural stimuli.
Figure 4: Dependence of reliability improvement on response sparseness.
Figure 5: Persistence of improvement in correlation coefficient induced by natural movies.
Figure 6: Correlation coefficient between spontaneous and visually evoked spiking patterns.
Figure 7: Further analysis of correlation coefficient between spontaneous and visually evoked spiking patterns.

Similar content being viewed by others

References

  1. Maffei, L., Fiorentini, A. & Bisti, S. Neural correlate of perceptual adaptation to gratings. Science 182, 1036–1038 (1973).

    Article  CAS  Google Scholar 

  2. Movshon, J.A. & Lennie, P. Pattern-selective adaptation in visual cortical neurones. Nature 278, 850–852 (1979).

    Article  CAS  Google Scholar 

  3. Muller, J.R., Metha, A.B., Krauskopf, J. & Lennie, P. Rapid adaptation in visual cortex to the structure of images. Science 285, 1405–1408 (1999).

    Article  CAS  Google Scholar 

  4. Dragoi, V., Sharma, J. & Sur, M. Adaptation-induced plasticity of orientation tuning in adult visual cortex. Neuron 28, 287–298 (2000).

    Article  CAS  Google Scholar 

  5. Carandini, M. & Ferster, D. A tonic hyperpolarization underlying contrast adaptation in cat visual cortex. Science 276, 949–952 (1997).

    Article  CAS  Google Scholar 

  6. Sanchez-Vives, M.V., Nowak, L.G. & McCormick, D.A. Membrane mechanisms underlying contrast adaptation in cat area 17 in vivo. J. Neurosci. 20, 4267–4285 (2000).

    Article  CAS  Google Scholar 

  7. Chance, F.S., Nelson, S.B. & Abbott, L.F. Synaptic depression and the temporal response characteristics of V1 cells. J. Neurosci. 18, 4785–4799 (1998).

    Article  CAS  Google Scholar 

  8. Eysel, U.T., Eyding, D. & Schweigart, G. Repetitive optical stimulation elicits fast receptive field changes in mature visual cortex. Neuroreport 9, 949–954 (1998).

    Article  CAS  Google Scholar 

  9. Hebb, D.O. The Organization of Behavior (Wiley, New York, 1949).

    Google Scholar 

  10. Fu, Y.X. et al. Temporal specificity in the cortical plasticity of visual space representation. Science 296, 1999–2003 (2002).

    Article  CAS  Google Scholar 

  11. Yao, H. & Dan, Y. Stimulus timing-dependent plasticity in cortical processing of orientation. Neuron 32, 315–323 (2001).

    Article  CAS  Google Scholar 

  12. Yao, H., Shen, Y. & Dan, Y. Intracortical mechanism of stimulus-timing-dependent plasticity in visual cortical orientation tuning. Proc. Natl. Acad. Sci. USA 101, 5081–5086 (2004).

    Article  CAS  Google Scholar 

  13. Markram, H., Lubke, J., Frotscher, M. & Sakmann, B. Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275, 213–215 (1997).

    Article  CAS  Google Scholar 

  14. Bi, G.Q. & Poo, M.M. Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci. 18, 10464–10472 (1998).

    Article  CAS  Google Scholar 

  15. Chapman, B. & Stryker, M.P. Development of orientation selectivity in ferret visual cortex and effects of deprivation. J. Neurosci. 13, 5251–5262 (1993).

    Article  CAS  Google Scholar 

  16. Li, Y., Fitzpatrick, D. & White, L.E. The development of direction selectivity in ferret visual cortex requires early visual experience. Nat. Neurosci. 9, 676–681 (2006).

    Article  CAS  Google Scholar 

  17. Crist, R.E., Li, W. & Gilbert, C.D. Learning to see: experience and attention in primary visual cortex. Nat. Neurosci. 4, 519–525 (2001).

    Article  CAS  Google Scholar 

  18. Schoups, A., Vogels, R., Qian, N. & Orban, G. Practising orientation identification improves orientation coding in V1 neurons. Nature 412, 549–553 (2001).

    Article  CAS  Google Scholar 

  19. Fahle, M. & Poggio, T. Perceptual Learning (MIT Press, Cambridge, Massachusetts, USA, 2002).

    Book  Google Scholar 

  20. Furmanski, C.S., Schluppeck, D. & Engel, S.A. Learning strengthens the response of primary visual cortex to simple patterns. Curr. Biol. 14, 573–578 (2004).

    Article  CAS  Google Scholar 

  21. Li, W., Piech, V. & Gilbert, C.D. Perceptual learning and top-down influences in primary visual cortex. Nat. Neurosci. 7, 651–657 (2004).

    Article  CAS  Google Scholar 

  22. Barlow, H.B. Single units and sensation: a neuron doctrine for perceptual psychology? in Sensory Communication (ed. Rosenblith, W.A.) 217–234 (MIT Press, Cambridge, Massachusetts, 1961).

    Google Scholar 

  23. Olshausen, B.A. & Field, D.J. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381, 607–609 (1996).

    Article  CAS  Google Scholar 

  24. Vinje, W.E. & Gallant, J.L. Sparse coding and decorrelation in primary visual cortex during natural vision. Science 287, 1273–1276 (2000).

    Article  CAS  Google Scholar 

  25. Abeles, M. & Gerstein, G.L. Detecting spatiotemporal firing patterns among simultaneously recorded single neurons. J. Neurophysiol. 60, 909–924 (1988).

    Article  CAS  Google Scholar 

  26. Nadasdy, Z., Hirase, H., Czurko, A., Csicsvari, J. & Buzsaki, G. Replay and time compression of recurring spike sequences in the hippocampus. J. Neurosci. 19, 9497–9507 (1999).

    Article  CAS  Google Scholar 

  27. Dave, A.S. & Margoliash, D. Song replay during sleep and computational rules for sensorimotor vocal learning. Science 290, 812–816 (2000).

    Article  CAS  Google Scholar 

  28. Louie, K. & Wilson, M.A. Temporally structured replay of awake hippocampal ensemble activity during rapid eye movement sleep. Neuron 29, 145–156 (2001).

    Article  CAS  Google Scholar 

  29. Kenet, T., Bibitchkov, D., Tsodyks, M., Grinvald, A. & Arieli, A. Spontaneously emerging cortical representations of visual attributes. Nature 425, 954–956 (2003).

    Article  CAS  Google Scholar 

  30. Ikegaya, Y. et al. Synfire chains and cortical songs: temporal modules of cortical activity. Science 304, 559–564 (2004).

    Article  CAS  Google Scholar 

  31. Foster, D.J. & Wilson, M.A. Reverse replay of behavioural sequences in hippocampal place cells during the awake state. Nature 440, 680–683 (2006).

    Article  CAS  Google Scholar 

  32. Frenkel, M.Y. et al. Instructive effect of visual experience in mouse visual cortex. Neuron 51, 339–349 (2006).

    Article  CAS  Google Scholar 

  33. Stopfer, M. & Laurent, G. Short-term memory in olfactory network dynamics. Nature 402, 664–668 (1999).

    Article  CAS  Google Scholar 

  34. Tulving, E. & Schacter, D.L. Priming and human memory systems. Science 247, 301–306 (1990).

    Article  CAS  Google Scholar 

  35. Saul, A.B. & Cynader, M.S. Adaptation in single units in visual cortex: the tuning of aftereffects in the spatial domain. Vis. Neurosci. 2, 593–607 (1989).

    Article  CAS  Google Scholar 

  36. Froemke, R.C. & Dan, Y. Spike-timing-dependent synaptic modification induced by natural spike trains. Nature 416, 433–438 (2002).

    Article  CAS  Google Scholar 

  37. Sjostrom, P.J. & Nelson, S.B. Spike timing, calcium signals and synaptic plasticity. Curr. Opin. Neurobiol. 12, 305–314 (2002).

    Article  CAS  Google Scholar 

  38. Steriade, M., Nunez, A. & Amzica, F. A novel slow (<1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components. J. Neurosci. 13, 3252–3265 (1993).

    Article  CAS  Google Scholar 

  39. Gais, S., Plihal, W., Wagner, U. & Born, J. Early sleep triggers memory for early visual discrimination skills. Nat. Neurosci. 3, 1335–1339 (2000).

    Article  CAS  Google Scholar 

  40. Stickgold, R., James, L. & Hobson, J.A. Visual discrimination learning requires sleep after training. Nat. Neurosci. 3, 1237–1238 (2000).

    Article  CAS  Google Scholar 

  41. Steriade, M. & Timofeev, I. Neuronal plasticity in thalamocortical networks during sleep and waking oscillations. Neuron 37, 563–576 (2003).

    Article  CAS  Google Scholar 

  42. Abbott, L.F. & Blum, K.I. Functional significance of long-term potentiation for sequence learning and prediction. Cereb. Cortex 6, 406–416 (1996).

    Article  CAS  Google Scholar 

  43. Rao, R.P.N. & Sejnowski, T.J. (eds.) Predictive Sequence Learning in Recurrent Neocortical Circuits (MIT Press, Cambridge, Massachusetts, USA, 2000).

  44. Bi, G. & Poo, M. Distributed synaptic modification in neural networks induced by patterned stimulation. Nature 401, 792–796 (1999).

    Article  CAS  Google Scholar 

  45. Attneave, F. Some informational aspects of visual perception. Psychol. Rev. 51, 183–193 (1954).

    Article  Google Scholar 

  46. Simoncelli, E.P. & Olshausen, B.A. Natural image statistics and neural representation. Annu. Rev. Neurosci. 24, 1193–1216 (2001).

    Article  CAS  Google Scholar 

  47. Felsen, G., Touryan, J., Han, F. & Dan, Y. Cortical sensitivity to visual features in natural scenes. PLoS Biol. 3, e342 (2005).

    Article  Google Scholar 

  48. Touryan, J., Lau, B. & Dan, Y. Isolation of relevant visual features from random stimuli for cortical complex cells. J. Neurosci. 22, 10811–10818 (2002).

    Article  CAS  Google Scholar 

  49. van Hateren, J.H. & Ruderman, D.L. Independent component analysis of natural image sequences yields spatio-temporal filters similar to simple cells in primary visual cortex. Proc. R. Soc. Lond. B 265, 2315–2320 (1998).

    Article  CAS  Google Scholar 

  50. Mokeichev, A. et al. Stochastic emergence of repeating cortical motifs in spontaneous membrane potential fluctuations in vivo. Neuron 53, 413–425 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Sompolinsky for helpful discussions. This work was supported by a grant from the US National Eye Institute (EY 015180).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Dan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Video 1

This is an example of the 30.1 s natural movies used in the experiments. (SWF 1337 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, H., Shi, L., Han, F. et al. Rapid learning in cortical coding of visual scenes. Nat Neurosci 10, 772–778 (2007). https://doi.org/10.1038/nn1895

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1895

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing