Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Size-dependent structure of MoS2 nanocrystals

Abstract

Molybdenum disulphide nanostructures are of interest for a wide variety of nanotechnological applications ranging from the potential use of inorganic nanotubes in nanoelectronics to the active use of nanoparticles in heterogeneous catalysis. Here, we use atom-resolved scanning tunnelling microscopy to systematically map and classify the atomic-scale structure of triangular MoS2 nanocrystals as a function of size. Instead of a smooth variation as expected from the bulk structure of MoS2, we observe a very strong size dependence for the cluster morphology and electronic structure driven by the tendency to optimize the sulphur excess present at the cluster edges. By analysing of the atomic-scale structure of clusters, we identify the origin of the structural transitions occurring at unique cluster sizes. The novel findings suggest that good size control during the synthesis of MoS2 nanostructures may be used for the production of chemically or optically active MoS2 nanomaterials with superior performance.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: STM image and cluster size distribution of MoS2 nanoclusters synthesized on Au(111).
Figure 2: Ball model of a bulk-truncated hexagonal MoS2 nanocluster exposing the low-index (101̄0) Mo and (1̄010) S edges (sulphur, yellow; molybdenum, blue) and also the most stable edge structures.
Figure 3: Seven atomically resolved STM images of single-layer MoS2 nanoclusters of different sizes in the range n = 4–12.
Figure 4: Detailed analysis of the edge structure of MoS2 triangles with n = 8, 5 and 4.
Figure 5: The NS/NMo ratio of sulphur atoms to Mo atoms calculated as a function of the triangle side length (n, number of Mo atoms at the edge) for triangular MoxSy nanoclusters, where x = NMo and y = NS.

Similar content being viewed by others

References

  1. Wang, Y. & Herron, N. Nanometer-sized semiconductor clusters — Materials synthesis, quantum size effects, and photophysical properties. J. Phys. Chem. 95, 525–532 (1991).

    Article  CAS  Google Scholar 

  2. Goldstein, A. N., Echer, C. M. & Alivisatos, A. P. Melting in semiconductor nanocrystals. Science 256, 1425–1427 (1992).

    Article  CAS  Google Scholar 

  3. Knickelbein, M. B. Electronic shell structure in the ionization-potentials of copper clusters. Chem. Phys. Lett. 192, 129–134 (1992).

    Article  CAS  Google Scholar 

  4. Haruta, M. Size- and support-dependency in the catalysis of gold. Catal. Today 36, 153–166 (1997).

    Article  CAS  Google Scholar 

  5. Wallis, T. M., Nilius, N. & Ho, W. Electronic density oscillations in gold atomic chains assembled atom by atom. Phys. Rev. Lett. 89, 236802 (2002).

    Article  CAS  Google Scholar 

  6. Yoon, B. et al. Charging effects on bonding and catalyzed oxidation of CO on Au-8 clusters on MgO. Science 307, 403–407 (2005).

    Article  CAS  Google Scholar 

  7. Rapoport, L. et al. Hollow nanoparticles of WS2 as potential solid-state lubricants. Nature 387, 791–793 (1997).

    Article  CAS  Google Scholar 

  8. Wilcoxon, J. P., Thurston, T. R. & Martin, J. E. Applications of metal and semiconductor nanoclusters as thermal and photo-catalysts. Nanostruct. Mater. 12, 993–997 (1999).

    Article  Google Scholar 

  9. Hinnemann, B. et al. Biomimetic hydrogen evolution: MoS2 nanoparticies as catalyst for hydrogen evolution. J. Am. Chem. Soc. 127, 5308–5309 (2005).

    Article  CAS  Google Scholar 

  10. Kline, G., Kam, K. K., Ziegler, R. & Parkinson, B. A. Further studies of the photoelectrochemical properties of the group VI transition metal dichalcogenides. Solar Energy Mater. 6, 337 (1982).

    Article  CAS  Google Scholar 

  11. Chan, M. K., Kim, J. S. & Rees, D. C. The nitrogenase FeMo cofactor and P-cluster pair — 2.2-angstrøm resolution structures. Science 260, 792–794 (1993).

    Article  CAS  Google Scholar 

  12. Hinnemann, B. & Nørskov, J. K. Chemical activity of the nitrogenase FeMo cofactor with a central nitrogen ligand: Density functional study. J. Am. Chem. Soc. 126, 3920–3927 (2004).

    Article  CAS  Google Scholar 

  13. Margulis, L., Salitra, G., Tenne, R. & Talianker, M. Nested fullerene-like structures. Nature 365, 113–114 (1993).

    Article  CAS  Google Scholar 

  14. Feldman, Y., Wasserman, E., Srolovitz, D. J. & Tenne, R. High-rate, gas-phase growth of MoS2 nested inorganic fullerenes and nanotubes. Science 267, 222–225 (1995).

    Article  CAS  Google Scholar 

  15. Seifert, G., Terrones, H., Terrones, M., Jungnickel, G. & Frauenheim, T. Structure and electronic properties of MoS2 nanotubes. Phys. Rev. Lett. 85, 146–149 (2000).

    Article  CAS  Google Scholar 

  16. Topsøe, H., Clausen, B. S. & Massoth, F. E. Hydrotreating Catalysis (Eds. Anderson, J. R. & Boudart, M.) (Springer Verlag, Berlin-Heidelberg, 1996).

  17. Prins, R. Catalytic hydrodenitrogenation. Adv. Catal. 46, 399–464 (2002).

    Google Scholar 

  18. Nørskov, J. K., Clausen, B. S. & Topsøe, H. Understanding the trends in the hydrodesulfurization activity of the transition metal sulfides. Catal. Lett. 13, 1–8 (1992).

    Article  Google Scholar 

  19. Helveg, S. et al. Atomic-scale structure of single-layer MoS2 nanoclusters. Phys. Rev. Lett. 84, 951–954 (2000).

    Article  CAS  Google Scholar 

  20. Brune, H. Microscopic view of epitaxial metal growth: nucleation and aggregation. Surf. Sci. Rep. 31, 121–229 (1998).

    Article  CAS  Google Scholar 

  21. Bollinger, M. V. et al. One-dimensional metallic edge states in MoS2 . Phys. Rev. Lett. 87, 196803 (2001).

    Article  CAS  Google Scholar 

  22. Lauritsen, J. V. et al. Atomic-scale insight into structure and morphology changes of MoS2 nanoclusters in hydrotreating catalysts. J. Catal. 221, 510–522 (2004).

    Article  CAS  Google Scholar 

  23. Bollinger, M. V., Jacobsen, K. W. & Nørskov, J. K. Atomic and electronic structure of MoS2 nanoparticles. Phys. Rev. B 67, 085410 (2003).

    Article  Google Scholar 

  24. Kibsgaard, J., Lauritsen, J. V., Clausen, B. S., Topsøe, H. & Besenbacher, F. Cluster-support interactions and morphology of MoS2 nanoclusters in a graphite-supported hydrotreating model catalyst. J. Am. Chem. Soc. 128, 13950–13958 (2006).

    Article  CAS  Google Scholar 

  25. Byskov, L. S., Nørskov, J. K., Clausen, B. S. & Topsøe, H. Edge termination of MoS2 and CoMoS catalyst particles. Catal. Lett. 64, 95–99 (2000).

    Article  CAS  Google Scholar 

  26. Tersoff, J. & Hamann, D. R. Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985).

    Article  CAS  Google Scholar 

  27. Schweiger, H., Raybaud, P., Kresse, G. & Toulhoat, H. Shape and edge sites modifications of MoS2 catalytic nanoparticles induced by working conditions: A theoretical study. J. Catal. 207, 76–87 (2002).

    Article  CAS  Google Scholar 

  28. Byskov, L. S., Nørskov, J. K., Clausen, B. S. & Topsøe, H. DFT calculations of unpromoted and promoted MoS2-based hydrodesulfurization catalysts. J. Catal. 187, 109–122 (1999).

    Article  CAS  Google Scholar 

  29. Hensen, E. J. M., de Beer, V. H. J., van Veen, J. A. R. & van Santen, R. A. A refinement on the notion of type I and II (Co)MoS phases in hydrotreating catalysts. Catal. Lett. 84, 59–67 (2002).

    Article  CAS  Google Scholar 

  30. Hinnemann, B., Nørskov, J. K. & Topsøe, H. A density functional study of the chemical differences between type I and type II MoS2-based structure in hydrotreating catalysts. J. Phys. Chem. B 109, 2245–2251 (2005).

    Article  CAS  Google Scholar 

  31. Topsøe, H. & Clausen, B. S. Importance of Co–Mo–S type structures in hydrodesulfurization. Catal. Rev. Sci. Eng. 26, 395–420 (1984).

    Article  Google Scholar 

  32. Wilcoxon, J. P. & Samara, G. A. Strong quantum-size effects in a layered semiconductor — MoS2 nanoclusters. Phys. Rev. B 51, 7299–7302 (1995).

    Article  CAS  Google Scholar 

  33. Chikan, V. & Kelley, D. F. Size-dependent spectroscopy of MoS2 nanoclusters. J. Phys. Chem. B 106, 3794–3804 (2002).

    Article  CAS  Google Scholar 

  34. Bertram, N. et al. Nanoplatelets made from MoS2 and WS2 . Chem. Phys. Lett. 418, 36–39 (2006).

    Article  CAS  Google Scholar 

  35. Raybaud, P., Hafner, J., Kresse, G., Kasztelan, S. & Toulhoat, H. Ab initio study of the H2–H2S/MoS2 gas–solid interface: The nature of the catalytically active sites. J. Catal. 189, 129–146 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P.G. Moses, B. Hinnemann, M. Bollinger, J.K. Nørskov and M. Brorson for stimulating discussions. J.V.L. acknowledges financial support from the Carlsberg Foundation.

Author information

Authors and Affiliations

Authors

Contributions

All authors conceived and designed the experiments: J.V.L., J.K. and S.H. performed the experiments. J.V.L. analysed the data, and all authors co-wrote the paper.

Corresponding author

Correspondence to Flemming Besenbacher.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lauritsen, J., Kibsgaard, J., Helveg, S. et al. Size-dependent structure of MoS2 nanocrystals. Nature Nanotech 2, 53–58 (2007). https://doi.org/10.1038/nnano.2006.171

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2006.171

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing