Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Fluid flow in carbon nanotubes and nanopipes

Abstract

Nanoscale carbon tubes and pipes can be readily fabricated using self-assembly techniques and they have useful electrical, optical and mechanical properties. The transport of liquids along their central pores is now of considerable interest both for testing classical theories of fluid flow at the nanoscale and for potential nanofluidic device applications. In this review we consider evidence for novel fluid flow in carbon nanotubes and pipes that approaches frictionless transport. Methods for controlling such flow and for creating functional device architectures are described and possible applications are discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Scanning electron microscope images of carbon nanopipes produced by the authors using standard chemical vapour deposition.
Figure 2
Figure 3: Imbibition of decane in a (7,7) carbon nanotube (diameter = 0.951 nm).
Figure 4: Carbon nanotube arrays and membranes.
Figure 5: ESEM images of the dynamic behaviour of a water plug in a carbon nanopipe.
Figure 6: Interfacing microfluidics with nanofluidics.

Similar content being viewed by others

References

  1. Iijima, S. Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991).

    Article  CAS  Google Scholar 

  2. Rowlinson, J. S. & Widom, B. Molecular Theory of Capillarity. Vol. Section 1.3. (Oxford Univ. Press, Oxford, 1982).

    Google Scholar 

  3. Palmer, S. B. & Rogalski, M. S. Advanced University Physics (Gordon and Breach, New York, 1996).

    Google Scholar 

  4. Washburn, E. W. The dynamics of capillary flow. Phys. Rev. 17, 273–278 (1921).

    Article  Google Scholar 

  5. de Gennes, P.-G., Brochard-Wyart, F. & Quere, D. Capillarity and Wetting Phenomena. (Springer, Berlin, 2004).

    Book  Google Scholar 

  6. Bosanquet, C. H., The flow of liquids into capillary tubes. Phil. Mag. 6, 525–531 (1923).

    Article  Google Scholar 

  7. Maxwell, J. C. On stresses in rarified gases arising from inequalities of temperature. Philos. Trans. R. Soc. 170, 231–256 (1879).

    Article  Google Scholar 

  8. Sokhan, V. P., Nicholson, D. & Quirke, N. Fluid flow in nanopores: an examination of hydrodynamic boundary conditions. J. Chem. Phys. 115, 3878–3887 (2001).

    Article  CAS  Google Scholar 

  9. Quirke, N. (ed.) Adsorption and Transport at the Nanoscale (CRC Press, Boca Raton, Florida, 2005).

    Book  Google Scholar 

  10. Lauga, E., Brenner, M. & Stone, H. The no-slip boundary condition: a review in The Handbook Of Experimental Fluid Dynamics (Springer, 2005).

    Google Scholar 

  11. Powell, C., Fenwick, N., Bresme, F. & Quirke, N. Wetting of nanoparticles and nanoparticle arrays. Colloid. Surface. A 206, 241–251 (2002).

    Article  CAS  Google Scholar 

  12. Travis, K. P., Todd, B. D. & Evans, D. J. Departure from Navier–Stokes hydrodynamics in confined liquids. Phys. Rev. E 55, 4288–4295 (1997).

    Article  CAS  Google Scholar 

  13. Werder, T., Walther, J. H., Jaffe, R. L., Halicioglu, T. & Koumoutsakos, P. On the water-carbon interaction for use in molecular dynamics simulations of graphite and carbon nanotubes. J. Phys. Chem. B 107, 1345–1352 (2003).

    Article  CAS  Google Scholar 

  14. Hummer, G., J. C. Rasaiah, and J. P. Noworyta, Water conduction through the hydrophobic channel of a carbon nanotube. Nature 414, 188–190 (2001).

    Article  CAS  Google Scholar 

  15. Waghe, A., Rasaiah, J. C. & Hummer, G. Filling and emptying kinetics of carbon nanotubes in water. J. Chem. Phys. 117, 10789–10795 (2002).

    Article  CAS  Google Scholar 

  16. Longhurst, M. & Quirke, N. Environmental effects on the radial breathing modes of carbon nanotubes in water. J. Chem. Phys. 124, 234708 (2006).

    Article  CAS  Google Scholar 

  17. Sokhan, V. P., Nicholson, D. & Quirke N. Fluid flow in nanopores: accurate boundary conditions for carbon nanotubes. J. Chem. Phys. 117, 8531–8539 (2002).

    Article  CAS  Google Scholar 

  18. Supple, S. & Quirke, N. Molecular dynamics of transient oil flows in nanopores I: Imbibition speeds for single wall carbon nanotubes. J. Chem. Phys. 121, 8571–8579 (2004).

    Article  CAS  Google Scholar 

  19. Supple, S. & Quirke, N. Rapid imbibition of fluids in carbon nanotubes. Phys. Rev. Lett. 90, 214501 (2003).

    Article  CAS  Google Scholar 

  20. Skoulidas, A. I. et al. Rapid transport of gases in carbon nanotubes. Phys. Rev. Lett. 89, 185901 (2002).

    Article  Google Scholar 

  21. Pfahler, J., Harley, J, Bau, H. & Zemel, J. Liquid transport in micron and submicron channels. Sensor. Actuat. A 22, 431–434 (1990).

    Article  Google Scholar 

  22. Cheng, J. T. & Giordano N. Fluid flow through nanometer-scale channels. Phys. Rev. E 65, 214501 (2002).

    Article  Google Scholar 

  23. Masuda, H., Hasegwa, F. & Ono, S. Self-ordering of cell arrangement of anodic porous alumina formed in sulfuric acid solution. J. Electrochem. Soc. 144, L127–L130 (1997).

    Article  CAS  Google Scholar 

  24. Routkevitch, D., Bigioni, T., Moskovits, M. & Xu, J. M. Electrochemical fabrication of CdS nanowire arrays in porous anodic aluminum oxide templates. J. Phys. Chem. 100, 14037–14047 (1996).

    Article  CAS  Google Scholar 

  25. Miller, S. A., Young, V. Y. & Martin, C. R. Electroosmotic flow in template-prepared carbon nanotube membranes. J. Am. Chem. Soc. 123, 12335–12342 (2001).

    Article  CAS  Google Scholar 

  26. Che, G., Lakshmi, B. B., Fisher, E. R. & Martin, C. R. Carbon nanotubule membranes for electrochemical energy storage and production. Nature 393, 346–349 (1998).

    Article  CAS  Google Scholar 

  27. Kyotani, T., Tsai, L. F. & Tomita, A. Preparation of ultrafine carbon tubes in nanochannels of an anodic aluminum oxide film. Chem. Mater. 8, 2109–2113 (2006).

    Article  Google Scholar 

  28. Mattia, D., et al. Effect of graphitization on the wettability and electrical conductivity of CVD-carbon nanotubes and films. J. Phys. Chem. B 110, 9850–9855 (2006).

    Article  CAS  Google Scholar 

  29. Hinds, B. J. et al. Aligned multiwalled carbon nanotube membranes. Science 303, 62–65 (2004).

    Article  CAS  Google Scholar 

  30. Majumder, M., Chopra, N., Andrews, R. & Hinds, B. J. Nanoscale hydrodynamics: enhanced flow in carbon nanotubes. Nature 438, 44 (2005).

    Article  CAS  Google Scholar 

  31. Holt, J. K. et al. Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312, 1034–1037 (2006).

    Article  CAS  Google Scholar 

  32. Rossi, M. P. et al. Environmental scanning electron microscopy study of water in carbon nanopipes. Nano Lett. 4, 989–993 (2004).

    Article  CAS  Google Scholar 

  33. Kim, B. M., Sinha, S. & Bau, H. H. Optical microscope study of liquid transport in carbon nanotubes. Nano Lett. 4, 2203–2208 (2004).

    Article  CAS  Google Scholar 

  34. Kim, B. M., Murray, T. & Bau, H. H. The fabrication of integrated carbon pipes with sub-micron diameters. Nanotechnology 16, 1317–1320 (2005).

    Article  CAS  Google Scholar 

  35. Miller, S. A. & Martin, C. R. Redox modulation of electroosmotic flow in a carbon nanotube membrane. J. Am. Chem. Soc. 126, 6226–6227 (2004).

    Article  CAS  Google Scholar 

  36. Melechko, A. V., McKnight, T. E., Guillorn, M. A. & Merkulov, V. I. Vertically aligned carbon nanofibers as sacrificial templates for nanofluidic structures. Appl. Phys. Lett. 82, 976–978 (2003).

    Article  CAS  Google Scholar 

  37. Majumder, M., Chopra, N. & Hinds, B. J. Effect of tip functionalization on transport through vertically oriented carbon nanotube membranes. J. Am. Chem. Soc. 127, 9062–9070 (2005).

    Article  CAS  Google Scholar 

  38. Babu, S., Ndungu, P., Bradley, J.-C., Rossi, M. P. & Gogotsi, Y. Guiding water into carbon nanopipes with the aid of bipolar electrochemistry. Microfluid. Nanofluid. 1, 284–288 (2005).

    Article  CAS  Google Scholar 

  39. Vaitheeswaran, S., Rasaiah, J. C. & Hummer, G. Electric field and temperature effects on water in the narrow nonpolar pores of carbon nanotubes. J. Chem. Phys. 121, 7955–7965 (2004).

    Article  CAS  Google Scholar 

  40. de Mello, A. J. Control and detection of chemical reactions in microfluidic systems. Nature 442, 394–402 (2006).

    Article  CAS  Google Scholar 

  41. Cao, H., Tegenfeldt, J. O., Austin, R. H. & Chou, S. Y. Gradient nanostructures for interfacing microfluidics and nanofluidics. Appl. Phys. Lett. 81, 3058–3060 (2002).

    Article  CAS  Google Scholar 

  42. Kenis, P. J. A. & Stroock, A. D. Materials for micro- and nanofluidics. MRS Bull. 31, 87–94 (2006).

    Article  Google Scholar 

  43. Heller, D. A. et al. Optical detection of DNA conformational polymorphism on single-walled carbon nanotubes. Science 311, 508–511 (2006).

    Article  CAS  Google Scholar 

  44. Bau, H. H., Sinha, S., Kim, B. & Riegelman, M. Fabrication of nanofluidic devices and the study of fluid transport through them in Proc. SPIE. Vol. 5592 (eds Lai, W. Y., Pau, S., Lopez, O. D.) 201–213 (SPIE, Bellington, Washington, 2005).

  45. Flachsbart, B. R., et al. Design and fabrication of a multilayered polymer microfluidic chip with nanofluidic interconnects via adhesive contact printing. Lab Chip 6, 667–674 (2006).

    Article  CAS  Google Scholar 

  46. Han, A. P., de Rooij, N. F. & Staufer, U. Design and fabrication of nanofluidic devices by surface micromachining. Nanotechnology 17, 2498–2503 (2006).

    Article  CAS  Google Scholar 

  47. Wang, Y. C., Stevens, A. L. & Han, J. Y. Million-fold preconcentration of proteins and peptides by nanofluidic filter. Anal. Chem. 77, 4293–4299 (2005).

    Article  CAS  Google Scholar 

  48. Skoulidas, A. I., Ackerman, D. M., Johnson, J. K. & Sholl, D. S. Rapid transport of gases in carbon nanotubes. Phys. Rev. Lett. 89, 185901 (2002).

    Article  Google Scholar 

  49. Agre, P. Aquaporin water channels (Nobel lecture). Angew. Chem. Int. Edn 43, 4278–4290 (2004).

    Article  CAS  Google Scholar 

  50. Supple, S. Molecular dynamics simulation of capillary flow at the nanoscale. PhD Thesis, Imperial College London (2005).

    Google Scholar 

Download references

Acknowledgements

M. Whitby acknowledges support from the EPSRC through a Doctoral Training Award and thanks F. Barclay and T. Cotter at RGB Research for helpful discussions. The authors are members of the EU network Inside POReS.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Whitby, M., Quirke, N. Fluid flow in carbon nanotubes and nanopipes. Nature Nanotech 2, 87–94 (2007). https://doi.org/10.1038/nnano.2006.175

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2006.175

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing