Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Inorganic nanotubes and fullerene-like nanoparticles

Abstract

Although graphite, with its anisotropic two-dimensional lattice, is the stable form of carbon under ambient conditions, on nanometre length scales it forms zero- and one-dimensional structures, namely fullerenes and nanotubes, respectively. This virtue is not limited to carbon and, in recent years, fullerene-like structures and nanotubes have been made from numerous compounds with layered two-dimensional structures. Furthermore, crystalline and polycrystalline nanotubes of pure elements and compounds with quasi-isotropic (three-dimensional) unit cells have also been synthesized, usually by making use of solid templates. These findings open up vast opportunities for the synthesis and study of new kinds of nanostructures with properties that may differ significantly from the corresponding bulk materials. Various potential applications have been proposed for the inorganic nanotubes and the fullerene-like phases. Fullerene-like nanoparticles have been shown to exhibit excellent solid lubrication behaviour, suggesting many applications in, for example, the automotive and aerospace industries, home appliances, and recently for medical technology. Various other potential applications, in catalysis, rechargeable batteries, drug delivery, solar cells and electronics have also been proposed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Presentation of WS2 nanotubes, which are synthesized in large amounts by sulphidizing tungsten oxide nanoparticles in a fluidized bed reactor.
Figure 2: TEM image of a closed-cage (fullerene-like) nested Cs2O nanostructure obtained by intense solar irradiation of pure crystalline Cs2O powder in vacuum.
Figure 3: Naturally occurring nanotubes are made of lattices with built-in asymmetry and have been known for many years1.
Figure 4: Hollow nano-octahedra, 3–6 nm in size and 2–5 layers thick were found in laser-ablated samples of different layered compounds, such as MoS2, NiCl2, SnS2.
Figure 5: The energies per atom Et/N of various MoS2 nanostructures is presented as a function of its size (N is the total number of atoms).
Figure 6: Tensile strength, bending and compression experiments on individual WS2 nanotubes were carried out, providing quantitative data on the mechanical properties of these nanostructures.
Figure 7: Anodization of titanium film, deposited on a conductive glass in acidic solutions containing HF, leads to the formation of a dense array of interconnected polycrystalline titania (TiO2) nanotubes.
Figure 8: A single nanotube metal-oxide solution field effect transistor (MOSolFET) could be considered as the ionic analogue of the electronic field-effect transistor.

Similar content being viewed by others

References

  1. Pauling, L. The structure of the chlorites. Proc. Nat. Acad. Sci. USA 16, 578–582 (1930).

    Article  CAS  Google Scholar 

  2. Bicerano, J. Maryanick, D. S. & Lipscomb, W. N. Molecular orbital studies on large closo boron hydrides. Inorg. Chem. 17, 3443–3453 (1978).

    Article  CAS  Google Scholar 

  3. Lipscomb, W. N. and Massa, L. Examples of large closo boron hydride analogs of carbon fullerenes. Inorg. Chem. 31, 2297–2299 (1992).

    Article  CAS  Google Scholar 

  4. Kroto, H. W., Heath, J. R., O'Brien, S. C., Curl, R. F. & Smalley, R. E. C60: Buckminsterfullerene. Nature 318, 162–163 (1985).

    Article  CAS  Google Scholar 

  5. Iijima, S. Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991).

    Article  CAS  Google Scholar 

  6. Tenne, R., Margulis, L., Genut M. & Hodes, G. Polyhedral and cylindrical structures of tungsten disulphide. Nature 360, 444–445 (1992).

    Article  CAS  Google Scholar 

  7. Margulis, L., Salitra, G., Tenne, R. & Talianker, M. Nested fullerene-like structures. Nature 365, 113–114 (1993).

    Article  CAS  Google Scholar 

  8. Feldman, Y., Wasserman, E., Srolovitz D. J. & Tenne R. High rate gas phase growth of MoS2 nested inorganic fullerene-like and nanotubes. Science 267, 222–225 (1995).

    Article  CAS  Google Scholar 

  9. Rosenfeld Hacohen Y. et al. Synthesis of NiCl2 nanotubes and fullerene-like structures by laser ablation. Phys. Chem. Chem. Phys. 5, 1644–1651 (2003).

    Article  CAS  Google Scholar 

  10. Albu-Yaron A. et al. Preparation and structural characterization of stable Cs2O closed-cage structures. Angew. Chem. Int. Edn 44, 4169–4172 (2005).

    Article  CAS  Google Scholar 

  11. Albu-Yaron, A. et al. Synthesis of fullerene-like Cs2O nanoparticles by concentrated sunlight. Adv. Mater. (in the press).

  12. Goldberger, J. et al. Single-crystal gallium nitride nanotubes. Nature 422, 599–602 (2003).

    Article  CAS  Google Scholar 

  13. Li, Y., Bando, Y. & Golberg, D. Single-crystalline In2O3 nanotubes filled with In. Adv. Mater. 15, 581–585 (2003).

    Article  CAS  Google Scholar 

  14. Yin, L. W., Bando, Y., Golberg, D. & Li, M. Growth of single-crystal indium nitride nanotubes and nanowires by controlled carbon-nitridation reaction. Adv. Mater. 16, 1833–1838 (2004).

    Article  CAS  Google Scholar 

  15. Rapoport, L., Fleischer. N. & Tenne, R. Applications of WS2 (MoS2) inorganic nanotubes and fullerene-like nanoparticles for solid lubrication and for structural nanocomposites. J. Mater. Chem. 15, 1782–1788 (2005).

    Article  CAS  Google Scholar 

  16. Tenne, R. & Rao, C. N. R. Inorganic nanotubes. Phil. Trans. R. Soc. Lond. A 362, 2099–2125 (2004).

    Article  CAS  Google Scholar 

  17. Remskar, M. Inorganic nanotubes. Adv. Mater. 16, 1497–1504 (2004).

    Article  CAS  Google Scholar 

  18. Patzke, G. R., Krumeich, F. & Nesper, R. Oxidic nanotubes and nanorods–anisotropic modules for a future nanotechnology. Angew. Chem. Int. Edn 41, 2446–2461 (2002).

    Article  CAS  Google Scholar 

  19. Tenne, R. Advances in the synthesis of inorganic nanotubes and fullerene-like nanoparticles. Angew. Chem. Int. Edn 42, 5124–5132 (2003).

    Article  CAS  Google Scholar 

  20. Rao, C. N. R. & Nath, M. Inorganic nanotubes. Dalton Trans. 1–25 (2003).

  21. Schuffenhauer, C., Popovitz-Biro, R. & Tenne, R. Synthesis of NbS2 nanoparticles with (nested) fullerene-like structure (IF). J. Mater. Chem. 12, 1587–1591 (2002).

    Article  CAS  Google Scholar 

  22. Chen, J., Tao, Z. L. & Li, S. L. Lithium intercalation in open-ended TiS2 nanotubes. Angew. Chem. Int. Edn 42, 2147–2151 (2003).

    Article  CAS  Google Scholar 

  23. Etzkorn, J. et al. Metal-organic chemical vapor deposition synthesis of hollow inorganic-fullerene-type MoS2 and MoSe2 nanoparticles. Adv. Mater. 17, 2372–2375 (2005).

    Article  CAS  Google Scholar 

  24. Li, X. P., Ge, J. P. & Li, Y. D. Atmospheric pressure chemical vapor deposition: An alternative route to large-scale MoS2 and WS2 inorganic fullerene-like nanostructures and nanoflowers. Chem. Eur. J. 10, 6163–6171 (2004).

    Article  CAS  Google Scholar 

  25. Margolin, A., Popovitz-Biro, R., Albu-Yaron, A., Rapoport, L. & Tenne, R. Inorganic fullerene-like nanoparticles of TiS2 . Chem. Phys. Lett. 411, 162–166 (2005).

    Article  CAS  Google Scholar 

  26. Malliakas, C. D. & Kanatzidis, M. G. Inorganic single wall nanotubes of SbPS4-xSex (0 <x<3) with tunable band gap J. Am. Chem. Soc. 128, 6538–6539 (2006).

    Article  CAS  Google Scholar 

  27. Therese, H. A. et al. VS2 nanotubes containing organic-amine templates from the NT-VOx precursors and reversible copper intercalation in NT-VS2 . Angew. Chem. Int. Edn 44, 262–265 (2005).

    Article  CAS  Google Scholar 

  28. Armstrong, A. R., Canales, J. & Bruce, P. G. WO2Cl2 Nanotubes and nanowires. Angew. Chem. Int. Edn 43, 4899–4902 (2004).

    Article  CAS  Google Scholar 

  29. Krivovichev, S. V. et al. Nanoscale tubules in uranyl selenates. Angew. Chem. Int. Edn 44, 1134–1136 (2005).

    Article  CAS  Google Scholar 

  30. Falini, G. et al. Tubular-shaped stoichiometric chrysotile nanocrystals. Chem. Eur. J. 10, 3043–3049 (2004).

    Article  CAS  Google Scholar 

  31. Roveri, N. Geoinspired Synthetic Chrysotile Nanotubes. J. Mater. Res. (in the press).

  32. Mukherjee, S., Bartlow, V. M. & Nair, S. Phenomenology of the growth of single-walled aluminosilicate and aluminogermanate nanotubes of precise dimensions. Chem. Mater. 17, 4900–4909 (2005).

    Article  CAS  Google Scholar 

  33. Zhi, C.Y., Bando Y., Tan C.C., Goldberg, D. Effective precursor for high yield synthesis of pure BN nanotubes. Solid State Commun. 135, 67–70 (2005).

    Article  CAS  Google Scholar 

  34. Zhi, C.Y. et al. Purification of boron nitride nanotubes through polymer wrapping. J. Phys. Chem. B 110, 1525–1528 (2006).

    Article  CAS  Google Scholar 

  35. Fan, H. J. et al. Monocrystalline spinel nanotube fabrication based on the Kirkendall effect. Nature Mater. 5, 627–631 (2006).

    Article  CAS  Google Scholar 

  36. Shen, G. et al. Single-crystalline nanotubes of II3-V2 semiconductors (submitted).

  37. Sehayek, T., Lahav, M., Popovitz-Biro, R., Vaskevich, A. & Rubinstein, I. Template synthesis of nanotubes by room-temperature coalescence of metal nanoparticles. Chem. Mater. 17, 3743–3748 (2005).

    Article  CAS  Google Scholar 

  38. Wang, Y., Lee, J. Y. & Zeng, H. C. Polycrystalline SnO2 nanotubes prepared via infiltration casting of nanocrystallites and their electrochemical application. Chem. Mater. 17, 3899–3903 (2005).

    Article  CAS  Google Scholar 

  39. Liu, Z. et al. Single Crystalline Magnetite Nanotubes. J. Am. Chem. Soc. 127, 6–7 (2005).

    Article  CAS  Google Scholar 

  40. Jhi, S.-H., Roundya, D. J., Louie, S. G. & Cohen, M. L. Formation and electronic properties of double-walled boron nitride nanotubes. Solid State Comm. 134, 397–402 (2005).

    Article  CAS  Google Scholar 

  41. Zhao, M., Xia, Y., Zhang, D. & Mei, L. Stability and electronic structure of AlN nanotubes. Phys. Rev. B 68, 235415 (2003).

    Article  Google Scholar 

  42. Linnolahti, M. & Pakkanen, T. A. Quantum chemical treatment of large nanotubes via use of line group symmetry: Structural preferences of magnesium dichloride nanotubes. J. Phys. Chem. B 110, 4675–4678 (2006).

    Article  CAS  Google Scholar 

  43. Enyashin, A. N. et al. Structure and stability of molybdenum sulfide fullerenes. Angew. Chem. Int. Edn (in the press).

  44. Parilla, P. A. et al. Formation of nanooctahedra in molybdenum disulfide and molybdenum diselenide using pulsed laser vaporization. J. Phys. Chem. B 108, 6197–6207 (2004).

    Article  CAS  Google Scholar 

  45. Nath, M., Kar S., Raychaudhuri, A. K. & Rao, C. N. R. Superconducting NbSe2 nanostructures. Chem. Phys. Lett. 368, 690–695 (2003).

    Article  CAS  Google Scholar 

  46. Zhao, M., Xia, Y., Li, F., Zhang, R. Q. & Lee, S. T. Strain energy and electronic structures of silicon carbide nanotubes: Density functional calculations. Phys. Rev. B 71, 085312 (2005).

    Article  Google Scholar 

  47. Khoo, K. H., Mazzoni, M. S. C. & Louie, S. G. Tuning the electronic properties of boron nitride nanotubes with transverse electric fields: A giant dc Stark effect. Phys. Rev. B 69, 201401(R) (2004).

    Article  Google Scholar 

  48. Ishigami, M., Sau, J. D., Aloni, S., Cohen, M. L. & Zettl A. Observation of the giant stark effect in boron-nitride nanotubes. Phys. Rev. Lett. 94, 056804 (2005).

    Article  Google Scholar 

  49. Kaplan-Ashiri, I. et al. On the mechanical behaviour of WS2 nanotubes under axial tension and compression. Proc. Natl. Acad. Sci. USA 103, 523–528 (2006).

    Article  CAS  Google Scholar 

  50. Barber, A. H., Kaplan-Ashiri, I., Cohen, S. R., Tenne, R. & Wagner, H. D. Stochastic strength of nanotubes: An appraisal of available data. Comp. Sci. Technol. 65, 2380–2384 (2005).

    Article  CAS  Google Scholar 

  51. Katz, A., Redlich, M., Rapoport, L., Wagner, H. D. & Tenne, R. Improved orthodontic wires using fullerene-like WS2 self-lubricating coatings. Tribol. Lett. 21, 135–139 (2006).

    Article  CAS  Google Scholar 

  52. Moore, G. E. Acute inhalation toxicity study in rats – limit test. Product safety laboratories, study number 18503. Dayton, New Jersey, USA 2006, Jan 18.

  53. Joly-Pottuz, L. et al. Ultralow-friction and wear properties of IF-WS2 under boundary lubrication. Tribol. Lett. 18, 477–485 (2005).

    Article  CAS  Google Scholar 

  54. Zhu, Y. Q. et al. Shock-absorbing and failure mechanism of WS2 and MoS2 nanoparticles with fullerene-like structure under shockwave pressures. J. Am. Chem. Soc. 127, 16263–16272 (2005).

    Article  CAS  Google Scholar 

  55. Joly-Pottuz, L. et al. Pressure-induced exfoliation of inorganic fullerene-like WS2 particles in a Hertzian contact. J. Appl. Phys. 99, 023524 (2006).

    Article  Google Scholar 

  56. Bundy, F. P. The P, T phase and reaction diagram for elemental carbon. J. Geophys. Res. 85, 6930–6936 (1979).

    Article  Google Scholar 

  57. Krusin-Elbaum, L. et al. Room-temperature ferromagnetic nanotubes controlled by electron or hole doping. Nature 431, 672–676 (2004).

    Article  CAS  Google Scholar 

  58. Qian, L. et al. Improved optoelectronic characteristics of light-emitting diodes by using a dehydrated nanotube titanic acid (DNTA)-polymer nanocomposites. J. Phys. Chem. B 108, 13928–13931 (2004).

    Article  CAS  Google Scholar 

  59. Tokudome, H. & Miyauchi, M. Electrochromism of titanate-based nanotubes. Angew. Chem. Int. Edn 44, 1974–1977 (2005).

    Article  CAS  Google Scholar 

  60. Xu, X. G., Ding, X., Chen, Q. & Peng, L.-M. Electronic, optical, and magnetic properties of Fe-intercalated H2Ti3O7 nanotubes: First-principles calculations and experiments. Phys. Rev. B 73, 165403 (2006).

    Article  Google Scholar 

  61. Liu, A., Wei, M., Honma, I. & Zhou, H. Biosensing properties of titanate-nanotube films: selective detection of dopamine in the presence of ascorbate and uric acid. Adv. Funct. Mater. 16, 371–376 (2006).

    Article  CAS  Google Scholar 

  62. Mor, G. K., Carvalho, M. A., Varghese, O. K., Pishko, M. V. & Grimes, C. A. A room-temperature TiO2-nanotube hydrogen sensor able to self-clean photoactively from environmental contamination. J. Mater. Res. 19, 628–634 (2004).

    Article  CAS  Google Scholar 

  63. Ruan, C. M., Paulose, M., Vargese, O. K. & Grimes, C. A. Enhanced photoelectrochemical-response in highly ordered TiO2 nanotube-arrays anodized in boric acid containing electrolyte. Sol. Energ. Mater. Sol. Cell 90, 1283–1295 (2006).

    Article  CAS  Google Scholar 

  64. Paulose, M. et al. Backside illuminated dye-sensitized solar cells based on titania nanotube array electrodes. Nanotechnology 17, 1446–1448 (2006).

    Article  CAS  Google Scholar 

  65. Paulose, M., Shankar, K., Varghese, O. K., Mor, G. K. & Grimes, C. A. Application of highly-ordered TiO2 nanotube-arrays in heterojunction dye-sensitized solar cells. J. Phys. D 39, 2498–2503 (2006).

    Article  CAS  Google Scholar 

  66. Mitchell, D. T. et al. Smart nanotubes for bioseparations and biocatalysis. J. Am. Chem. Soc. 124, 11864–11865 (2002).

    Article  CAS  Google Scholar 

  67. Goldberger, J., Fan, R. & Yang, P. Inorganic nanotubes: A novel platform for nanofluidics. Acc. Chem. Res. 39, 239–248 (2006).

    Article  CAS  Google Scholar 

  68. Dhas, N. A. & Suslick, K. S. Sonochemical preparation of hollow nanospheres and nollow nanocrystals. J. Am. Chem. Soc. 127, 2368–2369 (2005).

    Article  CAS  Google Scholar 

  69. Cheng, F., Gou, X., Chen, J. & Xu, Q. Ni/MoS2 nanocomposites as the catalysts for hydrodesulphurization of thiophene and thiophene derivatives. Adv. Mater. 18, 2561–2564 (2006).

    Article  CAS  Google Scholar 

  70. Chen, R., So, M. H., Yang, J., Deng, F., Chea, C. M. & Sun, H. Fabrication of bismuth subcarbonate nanotube arrays from bismuth citrate. Chem. Commun. 2265–2267 (2006).

  71. Zhi, C., Bando, Y., Tang, C. & Golberg, D. Immobilization of proteins on BN nanotubes. J. Am. Chem. Soc. 127, 17144–17145 (2005).

    Article  CAS  Google Scholar 

  72. Chen, J., Li, S., Tao, Z., Shen, Y. & Cui, C. J. Am. Chem. Soc. 125, 5284–5285 (2003).

    Article  CAS  Google Scholar 

  73. Dominko, R. et al. Electrochimica Acta 48, 3079–3084 (2003).

    Article  CAS  Google Scholar 

  74. Li, J., Tang, Z. & Zhang, Z. H-titanate nanotube: a novel lithium intercalation host with large capacity and high rate capability. Electrochem. Commun. 7, 62–67 (2005).

    Article  CAS  Google Scholar 

  75. Li, W., Zhang, S. & Chen, J. Synthesis, characterization, and electrochemical application of Ca(OH)2-, Co(OH)2-, and Y(OH)3-coated Ni(OH)2 tubes. J. Phys. Chem. B 109, 14025–14032 (2005).

    Article  CAS  Google Scholar 

  76. Tenne, R. Issue 15 cover image. Phys. Chem. Chem. Phys. 6 (2004).

Download references

Acknowledgements

I am grateful to M. Bar-Sadan, I. Kaplan-Ashiri, R. Rosentsveig, A. Margolin, A, Albu-Yaron, R. Popovitz-Biro, S. R. Cohen, G. Seifert, M. Jansen, H. D. Wagner and J.M. Gordon for their help. The support of the Israeli Ministry of Science and Technology and the Israel Science Foundation is acknowledged.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tenne, R. Inorganic nanotubes and fullerene-like nanoparticles. Nature Nanotech 1, 103–111 (2006). https://doi.org/10.1038/nnano.2006.62

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2006.62

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing