Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Superwetting nanowire membranes for selective absorption

Abstract

The construction of nanoporous membranes is of great technological importance for various applications, including catalyst supports, filters for biomolecule purification, environmental remediation and seawater desalination1,2,3. A major challenge is the scalable fabrication of membranes with the desirable combination of good thermal stability, high selectivity and excellent recyclability. Here we present a self-assembly method for constructing thermally stable, free-standing nanowire membranes that exhibit controlled wetting behaviour ranging from superhydrophilic to superhydrophobic. These membranes can selectively absorb oils up to 20 times the material's weight in preference to water, through a combination of superhydrophobicity and capillary action. Moreover, the nanowires that form the membrane structure can be re-suspended in solutions and subsequently re-form the original paper-like morphology over many cycles. Our results suggest an innovative material that should find practical applications in the removal of organics, particularly in the field of oil spill cleanup.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of the as-synthesized nanowire membrane.
Figure 2: Characterization of the silicone-coated nanowire membrane.
Figure 3: Surface wetting switchability of the nanowire membrane.
Figure 4: Oil uptake studies of the silicone-coated nanowire membrane.
Figure 5: Solvent-separation studies.

Similar content being viewed by others

References

  1. Tanev, P. T., Chibwe, M. & Pinnavaia, T. J. Titanium-containing mesoporous molecular sieves for catalytic oxidation of aromatic compounds. Nature 368, 321–323 (1994).

    Article  CAS  Google Scholar 

  2. Shiflett, M. B. & Foley, H. C. Ultrasonic deposition of high-selectivity nanoporous carbon membranes. Science 285, 1902–1905 (1999).

    Article  CAS  Google Scholar 

  3. Merkel, T. C. et al. Ultrapermeable reverse-selective nanocomposite membranes. Science 296, 519–522 (2002).

    Article  CAS  Google Scholar 

  4. Adebajo, M. O., Frost, R. L., Kloprogge, J. T., Carmody, O. & Kokot, S. Porous materials for oil spill cleanup: a review of synthesis and absorbing properties. J. Porous Mater. 10, 159–170 (2003).

    Article  CAS  Google Scholar 

  5. Park, S.-H. & Xia, Y. Macroporous membranes with highly ordered and three-dimensionally interconnected spherical pores. Adv. Mater. 10, 1045–1048 (1998).

    Article  CAS  Google Scholar 

  6. Johnson, S. A., Ollivier, P. J. & Mallouk, T. E. Ordered mesoporous polymers of tunable pore size from colloidal silica templates. Science 283, 963–965 (1999).

    Article  CAS  Google Scholar 

  7. Tang, Z., Kotov, N. A., Magonov, S. & Ozturk, B. Nanostructured artificial nacre. Nature Mater. 2, 413–418 (2003).

    Article  CAS  Google Scholar 

  8. Kohli, P. et al. DNA-functionalized nanotube membranes with single-base mismatch selectivity. Science 305, 984–986 (2004).

    Article  CAS  Google Scholar 

  9. Li, D., Wang, Y. & Xia, Y. Electrospining nanofibers as uniaxially aligned arrays and layer-by-bayer stacked films. Adv. Mater. 16, 361–366 (2004).

    Article  Google Scholar 

  10. Zhang, M. et al. Strong, transparent, multifunctional, carbon nanotube sheets. Science 309, 1215–1219 (2005).

    Article  CAS  Google Scholar 

  11. Wei, Q., Mather, R. R., Fotheringham, A. F. & Yang, R. Evaluation of nonwoven polypropylene oil sorbents in marine oil-spill recovery. Mar. Pollut. Bull. 46, 780–783 (2003).

    Article  CAS  Google Scholar 

  12. Ryu, D. Y., Shin, K., Drockenmuller, E., Hawker, C. & Russell, T. P. A generalized approach to the modification of solid surfaces. Science 308, 236–239 (2005).

    Article  CAS  Google Scholar 

  13. Lahann, J. et al. A reversibly switching surface. Science 299, 371–374 (2003).

    Article  CAS  Google Scholar 

  14. Cassie, A. B. D. & Baxter, S. Wettability of porous surfaces. Trans. Faraday Soc. 40, 546–551 (1944).

  15. Wenzel, R. N. Surface roughness and contact angle. J. Phys. Colloid Chem. 53, 1466–1470 (1949).

    Article  CAS  Google Scholar 

  16. Barthlott, W. & Neinhuis, C. Purity of sacred lotus, or escape from contamination in biological surfaces. Planta 202, 1–8 (1997).

    Article  CAS  Google Scholar 

  17. Nakajima, A., Hashimoto, K. & Watanabe, T. Transparent superhydrophobic thin films with self-cleaning properties. Langmuir 16, 7044–7047 (2000).

    Article  CAS  Google Scholar 

  18. Erbil, H. Y., Demirel, A. L., Avci, Y. & Mert, O. Transformation of a simple plastic into a superhydrophobic surface. Science 299, 1377–1380 (2003).

    Article  CAS  Google Scholar 

  19. Lau, K. K. S. et al. Superhydrophobic carbon nanotube forests. Nano Lett. 3, 1701–1705 (2003).

    Article  CAS  Google Scholar 

  20. Zhai, L., Cebeci, F., Cohen, R. E. & Rubner, M. F. Stable superhydrophobic coatings from polyelectrolyte multilayers. Nano Lett. 4, 1349–1353 (2004).

    Article  CAS  Google Scholar 

  21. Acatay, K., Simsek, E., Ow-Yang, C. & Menceloglu, Y. Z. Tunable, superhydrophobically stable polymeric surfaces by electrospinning. Angew. Chem. Int. Ed. 43, 5210–5213 (2004).

    Article  CAS  Google Scholar 

  22. Sun, T., Feng, L., Gao, X. & Jiang, L. Bioinspired surface with special wettability. Acc. Chem. Res. 38, 644–652 (2005).

    Article  CAS  Google Scholar 

  23. Zhai, L. et al. Patterned superhydrophobic surfaces: toward a synthetic mimic of the namib desert beetle. Nano Lett. 6, 1213–1217 (2006).

    Article  CAS  Google Scholar 

  24. Blossey, R. Self-cleaning surfaces: virtual realities. Nature Mater. 2, 301–306 (2003).

    Article  CAS  Google Scholar 

  25. Gao, L. & McCarthy, T. J. ‘Artificial lotus leaf’ prepared using a 1945 patent and a commercial textile. Langmuir 22, 5998–6000 (2006).

    Article  CAS  Google Scholar 

  26. Yuan, J., Laubernds, K., Villegas, J., Gomez, S. & Suib, S. L. Spontaneous formation of inorganic paper-like materials. Adv. Mater. 16, 1729–1732 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are extremely grateful to M. Rubner and R. Cohen for helpful discussions. F.S. is grateful for the 3M untenured faculty, the DuPont young faculty, and the Packard Fellowship awards, and for funding from the Singapore MIT Alliance 2. J.K. is grateful for the Intel Higher Education Program, the Deshpande Center for Technological Innovation award, and the DMA support. S.L.S. acknowledges the US Department of Energy and Office of Basic Energy Sciences for support of this work. X.L. acknowledges the Young Investigator Award by NUS.

Author information

Authors and Affiliations

Authors

Contributions

J.Y. and X.L. conceived and designed the experiments. J.Y., X.L. and O.A. performed the experiments. J.H. performed the TEM characterization. J.Y. analysed the data together with S.L.S., J.K. and F.S. X.L. and F.S. co-wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Jing Kong or Francesco Stellacci.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, J., Liu, X., Akbulut, O. et al. Superwetting nanowire membranes for selective absorption. Nature Nanotech 3, 332–336 (2008). https://doi.org/10.1038/nnano.2008.136

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2008.136

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing