Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Nanoscale shape-memory alloys for ultrahigh mechanical damping

Abstract

Shape memory alloys undergo reversible transformations between two distinct phases in response to changes in temperature or applied stress1. The creation and motion of the internal interfaces between these phases during such transformations dissipates energy, making these alloys effective mechanical damping materials2,3. Although it has been shown that reversible phase transformations can occur in nanoscale volumes4,5,6,7,8,9, it is not known whether these transformations have a sample size dependence. Here, we demonstrate that the two phases responsible for shape memory in Cu–Al–Ni alloys are more stable in nanoscale pillars than they are in the bulk. As a result, the pillars show a damping figure of merit that is substantially higher than any previously reported value for a bulk material, making them attractive for damping applications in nanoscale and microscale devices.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nano-compression tests.
Figure 2: Comparison of the compression behaviour in bulk single crystals and submicrometre pillars.
Figure 3: Figure of merit to optimize high damping and stiffness.

Similar content being viewed by others

References

  1. Otsuka, K. & Wayman, C. M. (eds) Shape Memory Materials (Cambridge Univ. Press, 1998).

    Google Scholar 

  2. Perez-Saez, R., Recarte, V., No, M. L. & San Juan, J. Anelastic contributions and transformed volume fraction during thermoelastic martensitic transformations. Phys. Rev. B 57, 5684–5692 (1998).

    Article  CAS  Google Scholar 

  3. Van Humbeeck, J. Damping capacity of thermoelastic martensite in shape memory alloys. J. Alloys Comp. 355, 58–64 (2003).

    Article  CAS  Google Scholar 

  4. Ma, X. G. & Komvopoulos, K. Nanoscale pseudoelasticity behavior of indented titanium–nickel films. Appl. Phys. Lett. 83, 3773–3775 (2003).

    Article  CAS  Google Scholar 

  5. Waitz, T., Kazykhanov, V. & Karnthaler, H. P. Martensitic phase transformations in nanocrystalline NiTi studied by TEM. Acta Mater. 52, 137–147 (2004).

    Article  CAS  Google Scholar 

  6. Fu, Y. Q. et al. On the lower thickness boundary of sputtered TiNi films for shape memory application. Thin Solid Films 515, 80–86 (2006).

    Article  CAS  Google Scholar 

  7. Frick, C. P., Lang, T. W., Spark, K. & Gall, K. Stress-induced martensitic transformations and shape memory at nanometer scales. Acta Mater. 54, 2223–2234 (2006).

    Article  CAS  Google Scholar 

  8. Ibarra, A., Caillard, D., San Juan, J. & Nó, M. L. Martensite nucleation on dislocations in Cu–Al–Ni shape memory alloys. Appl. Phys. Lett. 90, 101907 (2007).

    Article  Google Scholar 

  9. San Juan, J., Nó, M. L. & Schuh, C. A. Superelasticity and shape memory in micro- and nanometer-scale pillars. Adv. Mater. 20, 272–278 (2008).

    Article  CAS  Google Scholar 

  10. Uchic, M. D., Dimiduk, D. M., Florando, J. N. & Nix, W. D. Sample dimensions influence strength and crystal plasticity. Science 305, 986–989 (2004).

    Article  CAS  Google Scholar 

  11. Gall, K., Diao, J. & Dunn, M. L. The strength of gold nanowires. Nano Lett. 4, 2431–2436 (2004).

    Article  CAS  Google Scholar 

  12. Greer, J. R., Oliver, W. C. & Nix, W. D. Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients. Acta Mater. 53, 1821–1830 (2005).

    Article  CAS  Google Scholar 

  13. Greer, J. R. & Nix, W. D. Nanoscale gold pillars strengthened through dislocation starvation. Phys. Rev. B 73, 245410 (2006).

    Article  Google Scholar 

  14. Frick, C. P., Orso, S. & Arzt, E. Loss of pseudoelasticity in nickel–titanium sub-micron compression pillars. Acta Mater. 55, 3845–3855 (2007).

    Article  CAS  Google Scholar 

  15. Recarte, V., Perez-Saez, R. B., Bocanegra, E. H., Nó, M. L. & San Juan, J. Influence of Al and Ni concentration on the martensitic transformation in Cu–Al–Ni shape memory alloys. Metall. Mater. Trans. A 33, 2581–2591 (2002).

    Article  Google Scholar 

  16. Shan, Z. W., Mishra, R. K., Syed Asif, S. A., Warren, O. L. & Minor, A. M. Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals. Nature Mater. 7, 115–119 (2008).

    Article  CAS  Google Scholar 

  17. Schuh, C. A., Mason, J. K. & Lund, A. C. Quantitative insight into dislocation nucleation from high-temperature nanoindentation experiments. Nature Mater. 4, 617–621 (2005).

    Article  CAS  Google Scholar 

  18. Ibarra, A., San Juan, J., Bocanegra, E. H. & Nó, M. L. Evolution of microstructure and thermomechanical properties during superelastic compression cycling in Cu–Al–Ni single crystals. Acta Mater. 55, 4789–4798 (2007).

    Article  CAS  Google Scholar 

  19. Giannuzzi, L. A., Prenitzer, B. I. & Kempshall, B. W. Introduction to Focused Ion Beams (eds Gianuzzi, L. A. & Stevie, F. A.) 13–52 (Springer, 2005).

    Book  Google Scholar 

  20. Kiener, D., Motz, C., Rester, M., Jenko, M. & Dehm, G. FIB damage of Cu and possible consequences for miniaturized mechanical tests. Mater. Sci. Eng. A 459, 262–272 (2007).

    Article  Google Scholar 

  21. Rodriguez-Aseguinolaza, J., Ruiz-Larrea, I., Nó, M. L., López-Echarri, A. & San Juan, J. A new quantitative approach to the thermoelastic martensitic transformation: the density of elastic states. Acta Mater. 56, 6283–6290 (2008).

    Article  CAS  Google Scholar 

  22. Ashby, M. F. Materials Selection in Mechanical Design (Pergamon Press, 1992).

  23. Connally, J. A. & Brown, S. B. Slow crack growth in single-crystal silicon. Science 256, 1537–1539 (1992).

    Article  CAS  Google Scholar 

  24. Alsem, D. H., Pierron, O. N., Stach, E. A., Muhlstein, C. L. & Ritchie, R. O. Mechanisms for fatigue of micron-scale silicon structural films. Adv. Eng. Mater. 9, 15–30 (2007).

    Article  CAS  Google Scholar 

  25. Li, M., Tang, H. X. & Roukes, M. L. Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications. Nature Nanotech. 2, 114–120 (2007).

    Article  CAS  Google Scholar 

  26. Romig, A. D., Dugger, M. T. & McWhorther, P. J. Materials issues in microelectromechanical devices: science, engineering, manufacturability and reliability. Acta Mater. 51, 5837–5866 (2003).

    Article  CAS  Google Scholar 

  27. Zhang, H., Schuster, B. E., Wei, Q. & Ramesh, K. T. The design of accurate micro-compression experiments. Scripta Mater. 54, 181–186 (2006).

    Article  CAS  Google Scholar 

  28. Fantozzi, G. Mechanical Spectroscopy Q–1 2001 Ch. 1.1, 3–31 (Trans Tech Publications, 2001).

    Google Scholar 

  29. Nowick, A. S. & Berry, B. S. Anelastic Relaxation in Crystalline Solids (Academic Press, 1972).

    Google Scholar 

  30. Lakes, R. S. Viscoelastic Solids (CRC Press, 1999).

    Google Scholar 

Download references

Acknowledgements

J.S-J. thanks the University of the Basque Country and the Spanish Ministry of Education for the Sabbatical licence and the Mobility grant no. PR2005-0323 to stay at MIT. This work was supported by project MAT2004-03166 from the Spanish Ministry of Science and Education, and the ACTIMAT project from the ETORTEK program of the Basque Government. C.A.S. acknowledges the support of the US Army Research Office through the Institute for Soldier Nanotechnologies at MIT, and the US Office of Naval Research through grant no. N00014-08-1-0312.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose San Juan.

Supplementary information

Supplementary information

Supplementary information (PDF 2403 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Juan, J., Nó, M. & Schuh, C. Nanoscale shape-memory alloys for ultrahigh mechanical damping. Nature Nanotech 4, 415–419 (2009). https://doi.org/10.1038/nnano.2009.142

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2009.142

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing