Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Atomic structure of conducting nanofilaments in TiO2 resistive switching memory

Abstract

Resistance switching in metal oxides could form the basis for next-generation non-volatile memory. It has been argued that the current in the high-conductivity state of several technologically relevant oxide materials flows through localized filaments, but these filaments have been characterized only indirectly, limiting our understanding of the switching mechanism. Here, we use high-resolution transmission electron microscopy to probe directly the nanofilaments in a Pt/TiO2/Pt system during resistive switching. In situ current–voltage and low-temperature (130 K) conductivity measurements confirm that switching occurs by the formation and disruption of TinO2n−1 (or so-called Magnéli phase) filaments. Knowledge of the composition, structure and dimensions of these filaments will provide a foundation for unravelling the full mechanism of resistance switching in oxide thin films, and help guide research into the stability and scalability of such films for applications.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of the device structures and SEM image after the forming process.
Figure 2: Magnéli structures in the SET sample.
Figure 3: In situ I–V scan on nanofilaments.
Figure 4: Temperature-dependent conduction behaviours of the MIM sample in the SET state.
Figure 5: Structural transformation after an in situ RESET experiment.

Similar content being viewed by others

References

  1. Burr, G. W. et al. Overview of candidate device technologies for storage-class memory. IBM J. Res. Dev. 52, 449–464 (2008).

    Article  Google Scholar 

  2. Waser, R. (ed.) Nanoelectronics and Information Technology Ch. 4 (Wiley-VCH, 2003).

  3. Waser, R. & Aono, M. Nanoionics-based resistive switching memories. Nature Mater. 6, 833–840 (2007).

    Article  CAS  Google Scholar 

  4. Strukov, D. B., Snider, G. S., Stewart, D. R. & Williams, R. S. The missing memristor found. Nature 453, 80–83 (2008).

    Article  CAS  Google Scholar 

  5. Seo, S. et al. Reproducible resistance switching in polycrystalline NiO films. Appl. Phys. Lett. 85, 5655–5657 (2004).

    Article  CAS  Google Scholar 

  6. Meijer, G. I. Who wins the nonvolatile memory race? Science 319, 1625–1626 (2008).

    Article  CAS  Google Scholar 

  7. Likharev, K. K. & Strukov, D. B. Prospects for the development of digital circuits. Proc. IEEE Int. Symp. Nanoscale Architectures 109–116, 2007.

  8. Sawa, A. Resistive switching in transition metal oxides. Mater. Today 11, 28–36 (2008).

    Article  CAS  Google Scholar 

  9. Szot, K., Speier, W., Bihlmayer, G. & Waser, R. Switching the electrical resistance of individual dislocation in single-crystalline SrTiO3 . Nature Mater. 5, 312–320 (2006).

    Article  CAS  Google Scholar 

  10. Choi, B. J. et al. Resistive switching mechanism of TiO2 thin films grown by atomic-layer-deposition. J. Appl. Phys. 98, 033715 (2005).

    Article  Google Scholar 

  11. Kim, K. M., Choi, B. J., Shin, Y. C., Choi, S. & Hwang, C. S. Anode-interface localized filamentary mechanism in resistive switching of TiO2 thin films. Appl. Phys. Lett. 91, 012907 (2007).

    Article  Google Scholar 

  12. Rohde, C. et al. Identification of a determining parameter for resistive switching of TiO2 thin films. Appl. Phys. Lett. 86, 262907 (2005).

    Article  Google Scholar 

  13. Sato, Y., Kinoshita, K., Aoki, M. & Sugiyama, Y. Consideration of switching mechanism of binary metal oxide resistive junctions using a thermal reaction model. Appl. Phys. Lett. 90, 033503 (2007).

    Article  Google Scholar 

  14. Russo, U., Ielmini, D., Cagli, C. & Lacaita, A. L. Self-accelerated thermal dissolution model for reset programming in unipolar resistive-switching memory (RRAM) devices. IEEE Trans. Electron. Dev. 56, 193–200 (2009).

    Article  CAS  Google Scholar 

  15. Kim, K. M. & Hwang, C. S. The conical shape filament growth model in unipolar resistance switching of TiO2 thin film. Appl. Phys. Lett. 94, 122109 (2009).

    Article  Google Scholar 

  16. Jeong, D. S., Schroeder, H., Breuer, U. & Waser, R. Characteristic electroforming behaviour in Pt/TiO2/Pt resistive switching cells depending on atmosphere. J. Appl. Phys. 104, 123716 (2008).

    Article  Google Scholar 

  17. Shim, H. et al. Resistance-switching characteristics of polycrystalline Nb2O5 for nonvolatile memory application. IEEE Electron. Device Lett. 26, 292–294 (2005).

    Article  Google Scholar 

  18. Lee, D. et al. Resistance switching of the nonstoichiometric zirconium oxide for nonvolatile memory applications. IEEE Electron. Device Lett. 26, 719–721 (2005).

    Article  CAS  Google Scholar 

  19. Kim, K. M. et al. Resistive switching in Pt/Al2O3/TiO2/Ru stacked structures. Electrochem. Solid State Lett. 9, G343–G346 (2006).

    Article  CAS  Google Scholar 

  20. Jeong, D. S., Schroeder, H. & Waser, R. Coexistence of bipolar and unipolar resistive switching behaviors in a Pt/TiO2/Pt stack. Electrochem. Solid State Lett. 10, G51–G53 (2007).

    Article  CAS  Google Scholar 

  21. Lee, S., Kim, W.-G., Rhee, S.-W. & Yong, K. Resistance switching behaviors of hafnium oxide films grown by MOCVD for nonvolatile memory applications. J. Electrochem. Soc. 155, H92–H96 (2008).

    Article  CAS  Google Scholar 

  22. Yang, Y. C., Pan, F., Liu, Q., Liu, M. & Zeng, F. Fully room-temperature-fabricated nonvolatile resistive memory for ultrafast and high-density memory application. Nano Lett. 9, 1636–1643 (2009).

    Article  CAS  Google Scholar 

  23. Fujiwara, K. et al. Resistance switching and formation of a conductive bridge in metal/binary oxide/metal structure for memory devices. Jpn J. Appl. Phys. 47, 6266–6271 (2008).

    Article  CAS  Google Scholar 

  24. Lee, M.-J. et al. Electrical manipulation of nanofilaments in transition-metal oxides for resistance-based memory. Nano Lett. 9, 1476–1481 (2009).

    Article  CAS  Google Scholar 

  25. Bursill, L. A. & Hyde, B. G. Crystallographic shear in the higher titanium oxides: structure, texture, mechanisms and thermodynamics. Prog. Solid State Chem. 7, 177–253 (1972).

    Article  CAS  Google Scholar 

  26. Inglis, A. D., Page, Y. L., Strobel, P. & Hurd, C. M. Electrical conductance of crystalline TinO2n−1 for n = 4–9. J. Phys. C 16, 317–333 (1983).

    Article  CAS  Google Scholar 

  27. Yang, J. J. et al. Memristive switching mechanism for metal/oxide/metal nano devices. Nature Nanotech. 3, 429–433 (2008).

    Article  CAS  Google Scholar 

  28. Cho, E. et al. First-principles study of point defects in rutile TiO2−x . Phys. Rev. B 73, 193202 (2006).

    Article  Google Scholar 

  29. Lakkis, S., Schlenker, C., Chakraverty, B. K., Buder, R. & Marezio, M. Metal–insulator transitions in Ti4O7 single crystals: crystal characterization, specific heat and electron paramagnetic resonance. Phys. Rev. B 14, 1429–1440 (1976).

    Article  CAS  Google Scholar 

  30. Yasuhara, R. et al. Inhomogeneous chemical states in resistance-switching devices with a planar-type Pt/CuO/Pt structure. Appl. Phys. Lett. 95, 012110 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Research Foundation of Korea grant funded by the Ministry of Education, Science and Technology (2009-0083038) and MEST-AFOSR NBIT Program. C.S.H., K.M.K., M.H.L. and K.H.K. acknowledge support by the National Program for 0.1 Terabit NVM Devices of the Korean Government, the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (grant no. 2009-0081961), and World Class University program through the Korea Science and Engineering Foundation funded by the Ministry of Education, Science and Technology (grant no. R31-2008-000-10075-0). B.L. and S.H. were supported by the Quantum Metamaterials Research Center (grant no. R11-2008-053-03001-0).

Author information

Authors and Affiliations

Authors

Contributions

D.-H.K., J.H.J. and J.M.J. performed the TEM experiments and analysed the diffraction data. X.-S.L., G.-S.P. and D.-H.K. performed the in situ switching experiments in STM–TEM. K.M.K. and G.H.K. fabricated the samples and performed electrical switching experiments. M.H.L. performed the low temperature experiment. B.L. and S.H. performed the first-principles calculation. M.K. and C.S.H. conceived and designed the experiments. M.K., S.H. and C.S.H. co-wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Miyoung Kim or Cheol Seong Hwang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1452 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kwon, DH., Kim, K., Jang, J. et al. Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. Nature Nanotech 5, 148–153 (2010). https://doi.org/10.1038/nnano.2009.456

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2009.456

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing