Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Red spectral shift and enhanced quantum efficiency in phonon-free photoluminescence from silicon nanocrystals

Abstract

Crystalline silicon is the most important semiconductor material in the electronics industry. However, silicon has poor optical properties because of its indirect bandgap, which prevents the efficient emission and absorption of light. The energy structure of silicon can be manipulated through quantum confinement effects, and the excitonic emission from silicon nanocrystals increases in intensity and shifts to shorter wavelengths (a blueshift) as the size of the nanocrystals is reduced. Here we report experimental evidence for a short-lived visible band in the photoluminescence spectrum of silicon nanocrystals that increases in intensity and shifts to longer wavelengths (a redshift) with smaller nanocrystal sizes. This higher intensity indicates an increased quantum efficiency, which for 2.5-nm-diameter nanocrystals is enhanced by three orders of magnitude compared to bulk silicon. We assign this band to the radiative recombination of non-equilibrium electron–hole pairs in a process that does not involve phonons.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Temporal and spectral characteristics of PL for nanocrystals with an average diameter of 4.5 nm.
Figure 2: Hot PL and excitonic PL bands for all samples.
Figure 3: Carrier relaxation paths for low (Nexc < 1) and high (Nexc > 1) excitation flux.
Figure 4: Comparison of time-resolved spectral dependence of PL intensity for a sample with an average diameter of 2.5 nm under pulsed (Δt = 2 ps) and semi-c.w. (Δt = 5 ns) excitation at λexc = 325 nm.
Figure 5: Comparison of relative intensity of hot and excitonic PL bands for nanocrystals with an average diameter of 2.5 nm and 4 nm.

Similar content being viewed by others

References

  1. Rong, H. S. et al. An all-silicon Raman laser. Nature 433, 292–294 (2005).

    Article  CAS  Google Scholar 

  2. Cloutier, S. G., Kossyrev, P. A. & Xu, J. Optical gain and stimulated emission in periodic nanopatterned crystalline silicon. Nature Mater. 4, 887–891 (2005).

    Article  CAS  Google Scholar 

  3. Koshida, N. (ed.) Nanostructure Science and Technology: Device Applications of Silicon Nanocrystals and Nanostructures (Springer, 2008).

  4. Cullis, A. G. & Canham, L. T. Visible light emission due to quantum size effects in highly porous crystalline silicon. Nature 353, 335–338 (1991).

    Article  CAS  Google Scholar 

  5. Belyakov, V. A., Burdov, V. A., Lockwood, R. & Meldrum, A. Silicon nanocrystals: fundamental theory and implications for stimulated emission. Adv. Opt. Technol. 2008, 279502 (2008).

    Article  Google Scholar 

  6. Kovalev, D., Heckler, H., Polisski, G. & Koch, F. Optical properties of Si nanocrystals. Phys. Status Solidi b 215, 871–932 (1999).

    Article  CAS  Google Scholar 

  7. Wilson, W. L., Szajowski, P. F. & Brus, L. E. Quantum confinement in size-selected, surface-oxidized silicon nanocrystals. Science 262, 1242–1244 (1993).

    Article  CAS  Google Scholar 

  8. Sykora, M. et al. Size-dependent intrinsic radiative decay rates of silicon nanocrystals at large confinement energies. Phys. Rev. Lett. 100, 067401 (2008).

    Article  Google Scholar 

  9. Pavesi, L., Dal Negro, L., Mazzoleni, C., Franzò, G. & Priolo, F. Optical gain in silicon nanocrystals. Nature 408, 440–444 (2000).

    Article  CAS  Google Scholar 

  10. Park, J.-H et al. Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nature Mater. 8, 331–336 (2009).

    Article  CAS  Google Scholar 

  11. Beard, M. C. et al. Multiple exciton generation in colloidal silicon nanocrystals. Nano Lett. 7, 2506–2512 (2007).

    Article  CAS  Google Scholar 

  12. Timmerman, D., Izeddin, I., Stallinga, P., Yassievich, I. N. & Gregorkiewicz, T. Space-separated quantum cutting with Si nanocrystals for photovoltaic applications. Nature Photon. 2, 105–109 (2008).

    Article  CAS  Google Scholar 

  13. Schaller, R. D. Agranovich, V. M. & Klimov, V. I. High-efficiency carrier multiplication through direct photogeneration of multi-excitons via virtual single-excitons. Nature Phys. 1, 189–194 (2005).

    Article  CAS  Google Scholar 

  14. Shabaev, A., Efros, Al. L. & Nozik, A. J. Multiexciton generation by a single photon in nanocrystals. Nano Lett. 6, 2856–2863 (2006).

    Article  CAS  Google Scholar 

  15. Rama Krishna, M. V. & Friesner, R. A. Prediction of anomalous red shift in semiconductor clusters. J. Chem. Phys. 96, 873–877 (1992).

    Article  Google Scholar 

  16. Babić, D. & Tsu, R. Excitons in silicon nanocrystallites. Superlattice Microstruct. 22, 581–588 (1997).

    Article  Google Scholar 

  17. Moskalenko, A. S., Berakdar, J., Prokofiev, A. A. & Yassievich, I. N. Single-particle states in spherical Si/SiO2 quantum dots. Phys. Rev. B 76, 085427 (2007).

    Article  Google Scholar 

  18. Prokofiev, A. A. et al. Direct bandgap optical transitions in Si nanocrystals. JETP Lett. 90, 758–762 (2009).

    Article  CAS  Google Scholar 

  19. Ben-Chorin, M., Averboukh, B., Kovalev, D., Polisski, G. & Koch, F. Influence of quantum confinement on the critical points of the band structure of Si. Phys. Rev. Lett. 77, 763–766 (1996).

    Article  CAS  Google Scholar 

  20. Schmidt, P., Berndt, R. & Vexler, M. I. Ultraviolet light emission from Si in a scanning tunneling microscope. Phys. Rev. Lett. 99, 246103 (2007).

    Article  Google Scholar 

  21. Alivisatos, A. Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933–937 (1996).

    Article  CAS  Google Scholar 

  22. Pandey, A. & Guyot-Sionnest, P. Slow electron cooling in colloidal quantum dots. Science 332, 929–932 (2008).

    Article  Google Scholar 

  23. Wang, L.-W., Califano, M., Zunger, A. & Franceschetti, A. Pseudopotential theory of Auger processes in CdSe quantum dots. Phys. Rev. Lett. 91, 056404 (2003).

    Article  Google Scholar 

  24. Allan, G. & Delerue, C. Fast relaxation of hot carriers by impact ionization in semiconductor nanocrystals: role of defects. Phys. Rev. B 79, 195324 (2009).

    Article  Google Scholar 

  25. Trojánek, F., Neudert, K., Bittner, M. & Malý, P. Picosecond photoluminescence and transient absorption in silicon nanocrystals. Phys. Rev. B 72, 075365 (2005).

    Article  Google Scholar 

  26. Achermann, M., Hollingsworth, J. A. & Klimov, V. I. Multiexcitons confined within a subexcitonic volume: spectroscopic and dynamical signatures of neutral and charged biexcitons in ultrasmall semiconductor nanocrystals. Phys. Rev. B 68, 245302 (2003).

    Article  Google Scholar 

  27. Brewer, A. & Von Haeften, K. In situ passivation and blue luminescence of silicon clusters using a cluster beam/H2O codeposition production method. Appl. Phys. Lett. 94, 261102 (2009).

    Article  Google Scholar 

  28. Grom, G. F. et al. Ordering and self-organization in nanocrystalline silicon. Nature 407, 358–361 (2000).

    Article  CAS  Google Scholar 

  29. Delley, B. & Steigmeier, E. F. Quantum confinement in Si nanocrystals. Phys. Rev. B 47, 1397–1400 (1993).

    Article  CAS  Google Scholar 

  30. Wolkin, M. V., Jorne, J., Fauchet, P. M., Allan, G. & Delerue, C. Electronic states and luminescence in porous silicon quantum dots: the role of oxygen. Phys. Rev. Lett. 82, 197–200 (1999).

    Article  CAS  Google Scholar 

  31. Godefroo, S. et al. Classification and control of the origin of photoluminescence from Si nanocrystals. Nature Nanotech. 3, 174–178 (2008).

    Article  CAS  Google Scholar 

  32. Stathis, J. H. & Kastner, M. A. Time-resolved photoluminescence in amorphous silicon dioxide. Phys. Rev. B 35, 2972–2979 (1987).

    Article  CAS  Google Scholar 

  33. Puzder, A., Williamson, A. J., Grossman, J. C. & Galli, G. Surface chemistry of Si nanoclusters. Phys. Rev. Lett. 88, 097401 (2002).

    Article  Google Scholar 

  34. Valenta, J. et al. On the origin of the fast photoluminescence band in small silicon nanoparticles. New J. Phys. 10, 073022 (2008).

    Article  Google Scholar 

  35. Kanemitsu, Y. Luminescence properties of nanometer-sized Si crystallites: Core and surface states. Phys. Rev. B 49, 16845–16848 (1994).

    Article  CAS  Google Scholar 

  36. Rao, S., Mantey, K., Therrien J., Smith A. & Nayfeh, M. Molecular behavior in the vibronic and excitonic properties of hydrogenated silicon nanoparticles. Phys. Rev. B 76, 155316 (2007).

    Article  Google Scholar 

  37. Tsybeskov, L., Vandyshev, Ju. V. & Fauchet, P. M. Blue emission in porous silicon: oxygen-related luminescence. Phys. Rev. B 49, 7821–7824 (1994).

    Article  CAS  Google Scholar 

  38. Luo, J.-W, Franceschetti, A. & Zunger, A. Quantum-size-induced electronic transitions in quantum dots: indirect band-gap GaAs. Phys. Rev. B 78, 035306 (2008).

    Article  Google Scholar 

  39. Liu, J. et al. Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators. Nature Photon. 2, 433–437 (2008).

    Article  CAS  Google Scholar 

  40. Jurbergs, D., Rogojina, E., Mangolini, L. & Kortshagen, U. Silicon nanocrystals with ensemble quantum yield exceeding 60%. Appl. Phys. Lett. 88, 233116 (2006).

    Article  Google Scholar 

  41. Ledoux, G. et al. Photoluminescence properties of silicon nanocrystals as a function of their size. Phys. Rev. B 62, 15942–15951 (2000).

    Article  CAS  Google Scholar 

  42. Walters, J. R., Bourianoff, G. I. & Atwater, H. A. Field-effect electroluminescence in silicon nanocrystals. Nature Mater. 4, 143–146 (2005).

    Article  CAS  Google Scholar 

  43. Takeoka, S., Fujii, M. & Hayashi, S. Size-dependent photoluminescence from surface-oxidized Si nanocrystals in a weak confinement regime. Phys. Rev. B 62, 16820–16825 (2000).

    Article  CAS  Google Scholar 

  44. Kanzawa, Y. et al. Size-dependent near-infrared photoluminescence spectra of Si nanocrystals embedded in SiO2 matrices. Solid State Commun. 102, 533–537 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank M. Fujii (Kobe University) for sharing expertise on the preparation of sputtered layers, A.N. Poddubny, A.A. Prokofiev and A.S. Moskalenko (A.F. Ioffe Physico-Technical Institute) for discussions and theoretical insights, D. Bebelaar (University of Amsterdam) for technical assistance, and K. van der Vaart for contributing to the initial phase of the experiments. This work was financially supported by Stichting voor de Technologische Wetenschappen (STW), Stichting der Fundamenteel Onderzoek der Materie (FOM), and Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO).

Author information

Authors and Affiliations

Authors

Contributions

W.d.B. and T.G. conceived the project, designed the experiments and co-wrote the manuscript. W.d.B. performed experiments and data analysis. D.T. prepared the Si-NC layers. I.N.Y. provided theoretical interpretations and modelling. K.D. contributed essentially to finalization of the manuscript. H.Z. and W.J.B. facilitated picosecond PL spectroscopy and provided the necessary expertise. T.G. supervised and facilitated the project. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to W. D. A. M. de Boer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Boer, W., Timmerman, D., Dohnalová, K. et al. Red spectral shift and enhanced quantum efficiency in phonon-free photoluminescence from silicon nanocrystals. Nature Nanotech 5, 878–884 (2010). https://doi.org/10.1038/nnano.2010.236

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2010.236

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing