Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Iron from nanocompounds containing iron and zinc is highly bioavailable in rats without tissue accumulation

Abstract

Effective iron fortification of foods is difficult, because water-soluble compounds that are well absorbed, such as ferrous sulphate (FeSO4), often cause unacceptable changes in the colour or taste of foods. Poorly water-soluble compounds, on the other hand, cause fewer sensory changes, but are not well absorbed. Here, we show that poorly water-soluble nanosized Fe and Fe/Zn compounds (specific surface area 190 m2 g−1) made by scalable flame aerosol technology have in vivo iron bioavailability in rats comparable to FeSO4 and cause less colour change in reactive food matrices than conventional iron fortificants. The addition of Zn to FePO4 and Mg to Fe/Zn oxide increases Fe absorption from the compounds, and doping with Mg also improves their colour. After feeding rats with nanostructured iron-containing compounds, no stainable Fe was detected in their gut wall, gut-associated lymphatics or other tissues, suggesting no adverse effects. Nanosizing of poorly water-soluble Fe compounds sharply increases their absorption and nutritional value.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Transmission electron microscopy images with SAED patterns (insets) of flame-made, nanostructured food fortificants.
Figure 2: Schematic of the protocol of iron repletion with nanostructured compounds in rats.
Figure 3: Impact of different Fe-containing compounds on changes in haemoglobin concentration and their relative bioavailability compared to FeSO4.
Figure 4: Sensory performance of nanostructured iron-containing compounds in comparison with commercially available FeSO4, NaFeEDTA, ferrous fumarate and electrolytic iron in chocolate and banana milk, two sensitive food matrices at 10 mg Fe per 100 g food.

Similar content being viewed by others

References

  1. Allen, L., de Benoist, B., Dary, O. & Hurrell, R. F. Guidelines on Food Fortification with Micronutrients (World Health Organization, 2006).

    Google Scholar 

  2. Zimmermann, M. B. & Hurrell, R. F. Nutritional iron deficiency. Lancet 370, 511–520 (2007).

    Article  CAS  Google Scholar 

  3. International Zinc Nutrition Consultative Group. Assessment of the risk of zinc deficiency and options for its control. Food Nutr. Bull. 25, S91–S204 (2004).

  4. Zimmermann, M. B., Chaouki, N. & Hurrell, R. F. Iron deficiency due to consumption of a habitual diet low in bioavailable iron: a longitudinal cohort study in Moroccan children. Am. J. Clin. Nutr. 81, 115–121 (2005).

    Article  CAS  Google Scholar 

  5. Wieringa, F. T. et al. Combined iron and zinc supplementation in infants improved iron and zinc status, but interactions reduced efficacy in a multicountry trial in southeast asia. J. Nutr. 137, 466–471 (2007).

    Article  CAS  Google Scholar 

  6. Davidsson, L., Almgren, A., Sandstrom, B. & Hurrell, R. F. Zinc-absorption in adult humans—the effect of iron fortification. Br. J. Nutr. 74, 417–425 (1995).

    Article  CAS  Google Scholar 

  7. Hurrell, R. F. Fortification: overcoming technical and practical barriers. J. Nutr. 132, 806S–812S (2002).

    Article  CAS  Google Scholar 

  8. Motzok, I., Pennell, M. D., Davies, M. I. & Ross, H. U. Effect of particle-size on biological availability of reduced iron. J. Assoc. Off. Anal. Chem. 58, 99–103 (1975).

    CAS  Google Scholar 

  9. Rohner, F. et al. Synthesis, characterization and bioavailability in rats of ferric phosphate nanoparticles. J. Nutr. 137, 614–619 (2007).

    Article  CAS  Google Scholar 

  10. Mueller, R., Madler, L. & Pratsinis, S. E. Nanoparticle synthesis at high production rates by flame spray pyrolysis. Chem. Eng. Sci. 58, 1969–1976 (2003).

    Article  CAS  Google Scholar 

  11. Hilty, F. M. et al. Development and optimization of iron- and zinc-containing nanostructured powders for nutritional applications. Nanotechnology 20, 475101 (2009).

    Article  CAS  Google Scholar 

  12. Lynch, S. R. & Bothwel, T. A comparison of physical properties, screening procedures and a human efficacy trial for predicting the bioavailability of commercial elemental iron powders used for food fortification. Int. J. Vitam. Nutr. Res. 77, 107–124 (2007).

    Article  CAS  Google Scholar 

  13. Swain, J. H., Newman, S. M. & Hunt, J. R. Bioavailability of elemental iron powders to rats is less than bakery-grade ferrous sulfate and predicted by iron solubility and particle surface area. J. Nutr. 133, 3546–3552 (2003).

    Article  CAS  Google Scholar 

  14. Otten, J. J., Hellwig, J. P. & Mayers, L. D. Dietary Reference Intakes: The Essential Guide to Nutrient Requirements (Institute of Medicine of the National Academies, 2006).

    Google Scholar 

  15. Madler, L., Stark, W. J. & Pratsinis, S. E. Flame-made ceria nanoparticles. J. Mater. Res. 17, 1356–1362 (2002).

    Article  CAS  Google Scholar 

  16. Jung, I. H., Decterov, S. A. & Pelton, A. D. Critical thermodynamic evaluation and optimization of the Fe–Mg–O system. J. Phys. Chem. Solids 65, 1683–1695 (2004).

    Article  CAS  Google Scholar 

  17. Dheilly, R. M., Tudo, J. & Queneudec, M. Influence of climatic conditions on the carbonation of quicklime. J. Mater. Eng. Perform. 7, 789–795 (1998).

    Article  CAS  Google Scholar 

  18. Jossen, R., Pratsinis, S. E., Stark, W. J. & Madler, L. Criteria for flame-spray synthesis of hollow, shell-like or inhomogeneous oxides. J. Am. Ceram. Soc. 88, 1388–1393 (2005).

    Article  CAS  Google Scholar 

  19. Cunniff, P. & AOAC. in Official Methods of Analysis of AOAC International 62–63 (AOAC International, 1997).

    Google Scholar 

  20. Forbes, A. L. et al. Comparison of in vitro, animal and clinical determinations of iron bioavailability: International Nutritional Anemia Consultative Group Task Force report on iron bioavailability. Am. J. Clin. Nutr. 49, 225–238 (1989).

    Article  CAS  Google Scholar 

  21. Fritz, J. C., Pla, G. W., Harrison, B. N. & Clark, G. A. Collaborative study of rat hemoglobin repletion test for bioavailability of iron. J. Assoc. Off. Anal. Chem. 57, 513–517 (1974).

    CAS  Google Scholar 

  22. Cornell, R. M. & Schwertmann, U. The Iron Oxides Structure, Properties, Reactions, Occurences and Uses. 2nd edn (Wiley-VCH, 2003).

    Google Scholar 

  23. Riedel, E. Anorganische Chemie. 4th edn (de Gruyter, 1999).

    Google Scholar 

  24. Yoder, C. H. & Flora, N. J. Geochemical applications of the simple salt approximation to the lattice energies of complex materials. Am. Miner. 90, 488–496 (2005).

    Article  CAS  Google Scholar 

  25. Lide, D. R. CRC Handbook of Chemistry and Physics (Chapman & Hall/CRC, 2002).

    Google Scholar 

  26. Ifeacho, P., Wiggers, H. & Roth, P. SnO2/TiO2 mixed oxide particles synthesized in doped premixed H2/O2/Ar flames. Proc. Combust. Inst. 30, 2577–2584 (2005).

    Article  Google Scholar 

  27. Tricoli, A., Righettoni, M. & Pratsinis, S. E. Minimal cross-sensitivity to humidity during ethanol detection by SnO2–TiO2 solid solutions. Nanotechnology 20, 315502 (2009).

    Article  Google Scholar 

  28. Akurati, K. K. et al. One-step flame synthesis of SnO2/TiO2 composite nanoparticles for photocatalytic applications. Int. J. Photoenergy 7, 153–161 (2005).

    Article  CAS  Google Scholar 

  29. Vemury, S. & Pratsinis, S. E. Dopants in flame synthesis of titania. J. Am. Ceram. Soc. 78, 2984–2992 (1995).

    Article  CAS  Google Scholar 

  30. Jani, P., Halbert, G. W., Langridge, J. & Florence, A. T. Nanoparticle uptake by the rat gastrointestinal mucosa—quantitation and particle-size dependency. J. Pharm. Pharmacol. 42, 821–826 (1990).

    Article  CAS  Google Scholar 

  31. Jani, P. U., McCarthy, D. E. & Florence, A. T. Titanium-dioxide (rutile) particle uptake from the rat GI-tract and translocation to systemic organs after oral-administration. Int. J. Pharm. 105, 157–168 (1994).

    Article  CAS  Google Scholar 

  32. Wheby, M. S. Site of iron absorption in man. Scand. J. Haematol. 7, 56–62 (1970).

    Article  CAS  Google Scholar 

  33. Fleming, M. D. et al. Microcytic anaemia mice have a mutation in nramp2, a candidate iron transporter gene. Nature Genet. 16, 383–386 (1997).

    Article  CAS  Google Scholar 

  34. Garrick, M. D. & Garrick, L. M. Cellular iron transport. Biochim. Biophys. Acta—Gen. Subj. 1790, 309–325 (2009).

    Article  CAS  Google Scholar 

  35. Wang, J. X. et al. Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration. Toxicol. Lett. 168, 176–185 (2007).

    Article  CAS  Google Scholar 

  36. Hussain, N., Jaitley, V. & Florence, A. T. Recent advances in the understanding of uptake of microparticulates across the gastrointestinal lymphatics. Adv. Drug Deliv. Rev. 50, 107–142 (2001).

    Article  CAS  Google Scholar 

  37. Hillyer, J. F. & Albrecht, R. M. Gastrointestinal persorption and tissue distribution of differently sized colloidal gold nanoparticles. J. Pharm. Sci. 90, 1927–1936 (2001).

    Article  CAS  Google Scholar 

  38. Karlsson, H. L., Cronholm, P., Gustafsson, J. & Moller, L. Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem. Res. Toxicol. 21, 1726–1732 (2008).

    Article  CAS  Google Scholar 

  39. Volkheim. G., Schulz, F. H., Lindenau, A. & Beitz, U. Persorption of metallic iron particles. Gut 10, 32–33 (1969).

    Article  Google Scholar 

  40. Auffan, M. et al. Relation between the redox state of iron-based nanoparticles and their cytotoxicity toward Escherichia coli. Environ. Sci. Technol. 42, 6730–6735 (2008).

    Article  CAS  Google Scholar 

  41. Hallberg, L., Brune, M. & Rossander, L. Low bioavailability of carbonyl iron in man—studies on iron fortification of wheat-flour. Am. J. Clin. Nutr. 43, 59–67 (1986).

    Article  CAS  Google Scholar 

  42. Hurrell, R. How to ensure adequate iron absorption from iron-fortified food. Nutr. Rev. 60, S7–S15 (2002).

    Article  Google Scholar 

  43. Fidler, M. C., Davidsson, L., Walczyk, T. & Hurrell, R. F. Iron absorption from fish sauce and soy sauce fortified with sodium iron EDTA. Am. J. Clin. Nutr. 78, 274–278 (2003).

    Article  CAS  Google Scholar 

  44. Reeves, P. G., Nielsen, F. H. & Fahey, G. C. Ain-93 purified diets for laboratory rodents—final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the ain-76a rodent diet. J. Nutr. 123, 1939–1951 (1993).

    Article  CAS  Google Scholar 

  45. Fluttert, M., Dalm, S. & Oitzl, M. S. A refined method for sequential blood sampling by tail incision in rats. Lab. Anim. 34, 372–378 (2000).

    Article  CAS  Google Scholar 

  46. Amine, E. K., Hegsted, D. M. & Neff, R. Biological estimation of available iron using chicks or rats. J. Agric. Food Chem. 20, 246–251 (1972).

    Article  CAS  Google Scholar 

  47. Finney, D. J. in Statistical Methods in Biological Assay 187–213 (Charles Griffin & Company, 1978).

Download references

Acknowledgements

The authors would like to thank L. Berger (ETH, Zurich) for her technical assistance, M. Haldimann (The Ministry of Health, Bern, Switzerland) for the ICP-MS measurements, F. Krumeich (Electron Microscopy Center ETH, Zurich) for the TEM images of the Fe powders, and L. Molinari (Children's Hospital, Zurich) for support in statistical analysis. We thank P. Lohmann GmbH (Emmerthal, Germany) for providing the FeSO4 for the study at no cost, and BHA Technologies (Muemliswil, Switzerland) for supplying the Teflon filters at no cost. The study was supported by the Swiss National Science Foundation, Bern, Switzerland; the Swiss Commission for Technology and Innovation (KTI Projekt 9765.1 PFLS-LS), Bern, Switzerland; IMP (Industrial Metal Powders (India) Pvt Ltd) and ETH Zurich, Switzerland.

Author information

Authors and Affiliations

Authors

Contributions

F.M.H., M.B.Z., R.F.H. and S.E.P. conceived the experiments. F.M.H., M.B.Z. and W.L. designed the experiments. F.M.H. produced the compounds tested in the rat study. J.T.N.K. produced Mg containing oxides without Zn. F.M.H. and M.A. performed the animal study. M.H. and F.E. performed the histological analysis. F.M.H., A.T. and M.H. analysed the data. F.M.H., A.T., R.F.H. S.E.P., W.L. and M.B.Z. co-wrote the paper.

Corresponding author

Correspondence to Michael B. Zimmermann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 560 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hilty, F., Arnold, M., Hilbe, M. et al. Iron from nanocompounds containing iron and zinc is highly bioavailable in rats without tissue accumulation. Nature Nanotech 5, 374–380 (2010). https://doi.org/10.1038/nnano.2010.79

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2010.79

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing