Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Building plasmonic nanostructures with DNA

Abstract

Plasmonic structures can be constructed from precise numbers of well-defined metal nanoparticles that are held together with molecular linkers, templates or spacers. Such structures could be used to concentrate, guide and switch light on the nanoscale in sensors and various other devices. DNA was first used to rationally design plasmonic structures in 1996, and more sophisticated motifs have since emerged as effective and versatile species for guiding the assembly of plasmonic nanoparticles into structures with useful properties. Here we review the design principles for plasmonic nanostructures, and discuss how DNA has been applied to build finite-number assemblies (plasmonic molecules), regularly spaced nanoparticle chains (plasmonic polymers) and extended two- and three-dimensional ordered arrays (plasmonic crystals).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A 'periodic table' of plasmonic atoms.
Figure 2: Schematic of plasmonic nanostructures assembled from libraries of plasmonic atoms with various DNA motifs.
Figure 3: Plasmonic nanostructures rationally organized from metallic 'nanoparticle atoms'.

Similar content being viewed by others

References

  1. Schuller, J. A. et al. Plasmonics for extreme light concentration and manipulation. Nature Mater. 9, 193–204 (2010).

    CAS  Google Scholar 

  2. Shipway, A. N., Katz, E. & Willner, I. Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. ChemPhysChem 1, 18–52 (2000).

    CAS  Google Scholar 

  3. Ozbay, E. Plasmonics: Merging photonics and electronics at nanoscale dimensions. Science 311, 189–193 (2006).

    CAS  Google Scholar 

  4. Anker, J. N. et al. Biosensing with plasmonic nanosensors. Nature Mater. 7, 442–453 (2008).

    CAS  Google Scholar 

  5. Maier, S. A. et al. Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nature Mater. 2, 229–232 (2003).

    CAS  Google Scholar 

  6. Lal, S., Clare, S. E. & Halas, N. J. Nanoshell-enabled photothermal cancer therapy: Impending clinical impact. Acc. Chem. Rev. 41, 1842–1851 (2008).

    CAS  Google Scholar 

  7. Yavuz, M. S. et al. Gold nanocages covered by smart polymers for controlled release with near-infrared light. Nature Mater. 8, 935–939 (2009).

    CAS  Google Scholar 

  8. Mie, G. Beiträge zur optik trüber medien, speziell kolloidaler metallösungen. Ann. Phys. 330, 377–445 (1908).

    Google Scholar 

  9. Prodan, E., Radloff, C., Halas, N. J. & Nordlander, P. A hybridization model for the plasmon response of complex nanostructures. Science 302, 419–422 (2003).

    CAS  Google Scholar 

  10. Pérez-Juste, J., Pastoriza-Santos, I., Liz-Marzán, L. M. & Mulvaney, P. Gold nanorods: Synthesis, characterization and applications. Coordin. Chem. Rev. 249, 1870–1901 (2005).

    Google Scholar 

  11. Xia, Y., Xiong, Y., Lim, B. & Skrabalak, S. E. Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics? Angew. Chem. Int. Ed. 48, 60–103 (2009).

    CAS  Google Scholar 

  12. Schwartzberg, A. M., Olson, T. Y., Talley, C. E. & Zhang, J. Z. Synthesis, characterization, and tunable optical properties of hollow gold nanospheres. J. Phys. Chem. B 110, 19935–19944 (2006).

    CAS  Google Scholar 

  13. Xiong, Y. et al. Synthesis and mechanistic study of palladium nanobars and nanorods. J. Am. Chem. Soc. 129, 3665–3675 (2007).

    CAS  Google Scholar 

  14. Ni, W., Yang, Z., Chen, H., Li, L. & Wang, J. Coupling between molecular and plasmonic resonances in freestanding dye-gold nanorod hybrid nanostructures. J. Am. Chem. Soc. 130, 6692–6693 (2008).

    CAS  Google Scholar 

  15. Wijaya, A., Schaffer, S. B., Pallares, I. G. & Hamad-Schifferli, K. Selective release of multiple DNA oligonucleotides from gold nanorods. ACS Nano 3, 80–86 (2008).

    Google Scholar 

  16. Wiley, B. J. et al. Synthesis and electrical characterization of silver nanobeams. Nano Lett. 6, 2273–2278 (2006).

    CAS  Google Scholar 

  17. Zhao, N. et al. Controlled synthesis of gold nanobelts and nanocombs in aqueous mixed surfactant solutions. Langmuir 24, 991–998 (2008).

    CAS  Google Scholar 

  18. Huo, Z., Tsung, C-k., Huang, W., Zhang, X. & Yang, P. Sub-two nanometer single crystal au nanowires. Nano Lett. 8, 2041–2044 (2008).

    CAS  Google Scholar 

  19. Murphy, C. J., Gole, A. M., Hunyadi, S. E. & Orendorff, C. J. One-dimensional colloidal gold and silver nanostructures. Inorg. Chem. 45, 7544–7554 (2006).

    CAS  Google Scholar 

  20. Jin, R. et al. Photoinduced conversion of silver nanospheres to nanoprisms. Science 294, 1901–1903 (2001).

    CAS  Google Scholar 

  21. Porel, S., Singh, S. & Radhakrishnan, T. P. Polygonal gold nanoplates in a polymer matrix. Chem. Commun. 2387–2389 (2005).

  22. Das, S. K., Das, A. R. & Guha, A. K. Microbial synthesis of multishaped gold nanostructures. Small 6, 1012–1021 (2010).

    CAS  Google Scholar 

  23. Liu, B., Xie, J., Lee, J. Y., Ting, Y. P. & Chen, J. P. Optimization of high-yield biological synthesis of single-crystalline gold nanoplates. J. Phys. Chem. B 109, 15256–15263 (2005).

    CAS  Google Scholar 

  24. Ah, C. S. et al. Size-controlled synthesis of machinable single crystalline gold nanoplates. Chem. Mater. 17, 5558–5561 (2005).

    CAS  Google Scholar 

  25. Jiang, L-P. et al. Ultrasonic-assisted synthesis of monodisperse single-crystalline silver nanoplates and gold nanorings. Inorg. Chem. 43, 5877–5883 (2004).

    CAS  Google Scholar 

  26. Kim, F., Connor, S., Song, H., Kuykendall, T. & Yang, P. Platonic gold nanocrystals. Angew. Chem. Int. Ed. 43, 3673–3677 (2004).

    CAS  Google Scholar 

  27. Tao, A., Sinsermsuksakul, P. & Yang, P. Tunable plasmonic lattices of silver nanocrystals. Nature Nanotech. 2, 435–440 (2007).

    CAS  Google Scholar 

  28. Seo, D. et al. Shape adjustment between multiply twinned and single-crystalline polyhedral gold nanocrystals: Decahedra, icosahedra, and truncated tetrahedra. J. Phys. Chem. C 112, 2469–2475 (2008).

    CAS  Google Scholar 

  29. Kim, D. Y., Im, S. H., Park, O. O. & Lim, Y. T. Evolution of gold nanoparticles through Catalan, Archimedean, and Platonic solids. CrystEngComm 12, 116–121 (2010).

    CAS  Google Scholar 

  30. Sun, Y., Mayers, B. T. & Xia, Y. Template-engaged replacement reaction: A one-step approach to the large-scale synthesis of metal nanostructures with hollow interiors. Nano Lett. 2, 481–485 (2002).

    CAS  Google Scholar 

  31. Chen, S., Wang, Z. L., Ballato, J., Foulger, S. H. & Carroll, D. L. Monopod, bipod, tripod, and tetrapod gold nanocrystals. J. Am. Chem. Soc. 125, 16186–16187 (2003).

    CAS  Google Scholar 

  32. Liao, H-G., Jiang, Y-X., Zhou, Z-Y., Chen, S-P. & Sun, S-G. Shape-controlled synthesis of gold nanoparticles in deep eutectic solvents for studies of structure-functionality relationships in electrocatalysis. Angew. Chem. Int. Ed. 47, 9100–9103 (2008).

    CAS  Google Scholar 

  33. Mulvihill, M. J., Ling, X. Y., Henzie, J. & Yang, P. Anisotropic etching of silver nanoparticles for plasmonic structures capable of single-particle SERS. J. Am. Chem. Soc. 132, 268–274 (2009).

    Google Scholar 

  34. Lu, Y., Liu, G. L., Kim, J., Mejia, Y. X. & Lee, L. P. Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect. Nano Lett. 5, 119–124 (2004).

    Google Scholar 

  35. Wang, C. et al. Rational synthesis of heterostructured nanoparticles with morphology control. J. Am. Chem. Soc. 132, 6524–6529 (2010).

    CAS  Google Scholar 

  36. Lee, J., Hasan, W., Lee, M. H. & Odom, T. W. Optical properties and magnetic manipulation of bimaterial nanopyramids. Adv. Mater. 19, 4387–4391 (2007).

    CAS  Google Scholar 

  37. Cheng, W. L., Steinhart, M., Gösele, U. & Wehrspohn, R. Tree-like alumina nanopores generated in a non-steady-state anodization. J. Mater. Chem. 17, 3493–3495 (2007).

    CAS  Google Scholar 

  38. Qin, Y. et al. Ionic liquid-assisted growth of single-crystalline dendritic gold nanostructures with a three-fold symmetry. Chem. Mater. 20, 3965–3972 (2008).

    CAS  Google Scholar 

  39. Skrabalak, S. E. et al. Gold nanocages: Synthesis, properties, and applications. Acc. Chem. Rev. 41, 1587–1595 (2008).

    CAS  Google Scholar 

  40. Zou, X., Ying, E. & Dong, S. Preparation of novel silver-gold bimetallic nanostructures by seeding with silver nanoplates and application in surface-enhanced Raman scattering. J. Colloid Interface Sci. 306, 307–315 (2007).

    CAS  Google Scholar 

  41. Yin, Y., Erdonmez, C., Aloni, S. & Alivisatos, A. P. Faceting of nanocrystals during chemical transformation: From solid silver spheres to hollow gold octahedra. J. Am. Chem. Soc. 128, 12671–12673 (2006).

    CAS  Google Scholar 

  42. Wang, X. et al. One-pot solution synthesis of cubic cobalt nanoskeletons. Adv. Mater. 21, 1636–1640 (2009).

    CAS  Google Scholar 

  43. Sun, Y. & Xia, Y. Shape-controlled synthesis of gold and silver nanoparticles. Science 298, 2176–2179 (2002).

    CAS  Google Scholar 

  44. Seeman, N. C. DNA in a material world. Nature 421, 427–431 (2003).

    Google Scholar 

  45. Rothemund, P. W. K. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).

    CAS  Google Scholar 

  46. Le, J. D. et al. DNA-templated self-assembly of metallic nanocomponent arrays on a surface. Nano Lett. 4, 2343–2347 (2004).

    CAS  Google Scholar 

  47. Zhang, J., Liu, Y., Ke, Y. & Yan, H. Periodic square-like gold nanoparticle arrays templated by self-assembled 2D DNA nanogrids on a surface. Nano Lett. 6, 248–251 (2006).

    CAS  Google Scholar 

  48. Sharma, J. et al. Control of self-assembly of DNA tubules through integration of gold nanoparticles. Science 323, 112–116 (2009).

    CAS  Google Scholar 

  49. Pal, S., Deng, Z., Ding, B., Yan, H. & Liu, Y. DNA-origami-directed self-assembly of discrete silver-nanoparticle architectures. Angew. Chem. Int. Ed. 49, 2700–2704 (2010).

    CAS  Google Scholar 

  50. Storhoff, J. J. & Mirkin, C. A. Programmed materials synthesis with DNA. Chem. Rev. 99, 1849–1862 (1999).

    CAS  Google Scholar 

  51. Katz, E. & Willner, I. Integrated nanoparticle-biomolecule hybrid systems: Synthesis, properties, and applications. Angew. Chem. Int. Ed. 43, 6042–6108 (2004).

    CAS  Google Scholar 

  52. Niemeyer, C. M. & Simon, U. DNA-based assembly of metal nanoparticles. Eur. J. Inorg. Chem. 3641–3655 (2005).

  53. Ofir, Y., Samanta, B. & Rotello, V. M. Polymer and biopolymer mediated self-assembly of gold nanoparticles. Chem. Soc. Rev. 37, 1814–1823 (2008).

    CAS  Google Scholar 

  54. Choi, C. L. & Alivisatos, A. P. From artificial atoms to nanocrystal molecules: Preparation and properties of more complex nanostructures. Annu. Rev. Phys. Chem. 61, 369–389 (2010).

    CAS  Google Scholar 

  55. Mulvaney, P. Surface plasmon spectroscopy of nanosized metal particles. Langmuir 12, 788–800 (1996).

    CAS  Google Scholar 

  56. Kelly, L. K., Coronado, E., Zhao, L. L. & Schatz, G. C. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J. Phys. Chem. B 107, 668–677 (2003).

    CAS  Google Scholar 

  57. Liz-Marzán, L. M. Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir 22, 32–41 (2006).

    Google Scholar 

  58. Bohren, C. F. & Huffmann, D. R. Absorption and Scattering of Light by Small Particles (Wiley, 1983).

    Google Scholar 

  59. Kreibig, U. & Vollmer, M. Optical Properties of Metal Clusters (Springer, 1995).

    Google Scholar 

  60. Link, S. & El-Sayed, M. A. Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J. Phys. Chem. B 103, 4212–4217 (1999).

    CAS  Google Scholar 

  61. Wang, H., Brandl, D. W., Nordlander, P. & Halas, N. J. Plasmonic nanostructures: Artificial molecules. Acc. Chem. Res. 40, 53–62 (2007).

    Google Scholar 

  62. Gans, R. The shape of ultra microscopic gold nanoparticles. Ann. Phys. 37, 881–900 (1912).

    CAS  Google Scholar 

  63. Wiley, B. J. et al. Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis. J. Phys. Chem. B 110, 15666–15675 (2006).

    CAS  Google Scholar 

  64. Su, K-H., Wei, Q-H. & Zhang, X. Interparticle coupling effects on plasmon resonances of nanogold particles. Nano Lett. 3, 1087–1090 (2003).

    CAS  Google Scholar 

  65. Jain, P. K., Huang, W. & El-Sayed, M. A. On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: A plasmon ruler equation. Nano Lett. 7, 2080–2088 (2007).

    CAS  Google Scholar 

  66. Prodan, E. & Nordlander, P. Plasmon hybridization in spherical nanoparticles. J. Chem. Phys. 120, 5444–5454 (2004).

    CAS  Google Scholar 

  67. Nordlander, P., Oubre, C., Prodan, E., Li, K. & Stockman, M. I. Plasmon hybridization in nanoparticle dimers. Nano Lett. 4, 899–903 (2004).

    CAS  Google Scholar 

  68. Fan, J. A. et al. Self-assembled plasmonic nanoparticle clusters. Science 328, 1135–1138 (2010).

    CAS  Google Scholar 

  69. Quinten, M., Leitner, A., Krenn, J. R. & Aussenegg, F. R. Electromagnetic energy transport via linear chains of silver nanoparticles. Opt. Lett. 23, 1331–1333 (1998).

    CAS  Google Scholar 

  70. Wei, Q-H., Su, K-H., Durant, S. & Zhang, X. Plasmon resonance of finite one-dimensional Au nanoparticle chains. Nano Lett. 4, 1067–1071 (2004).

    CAS  Google Scholar 

  71. Lal, S., Link, S. & Halas, N. J. Nano-optics from sensing to waveguiding. Nature Photon. 1, 641–648 (2007).

    CAS  Google Scholar 

  72. Lin, S., Dujardin, E., Girard, C. & Mann, S. One-dimensional plasmon coupling by facile self-assembly of gold nanoparticles into branched chain networks. Adv. Mater. 17, 2553–2559 (2005).

    CAS  Google Scholar 

  73. Tabor, C., Van Haute, D. & El-Sayed, M. A. Effect of orientation on plasmonic coupling between gold nanorods. ACS Nano 3, 3670–3678 (2009).

    CAS  Google Scholar 

  74. Sheikholeslami, S., Jun, Y-W., Jain, P. K. & Alivisatos, A. P. Coupling of optical resonances in a compositionally asymmetric plasmonic nanoparticle dimer. Nano Lett. 10, 2655–2660 (2010).

    CAS  Google Scholar 

  75. Funston, A. M., Novo, C., Davis, T. J. & Mulvaney, P. Plasmon coupling of gold nanorods at short distances and in different geometries. Nano Lett. 9, 1651–1658 (2009).

    CAS  Google Scholar 

  76. Min, Y. J., Akbulut, M., Kristiansen, K., Golan, Y. & Israelachvili, J. The role of interparticle and external forces in nanoparticle assembly. Nature Mater. 7, 527–538 (2008).

    CAS  Google Scholar 

  77. Shevchenko, E. V., Talapin, D. V., Kotov, N. A., O'Brien, S. & Murray, C. B. Structural diversity in binary nanoparticle superlattices. Nature 439, 55–59 (2006).

    CAS  Google Scholar 

  78. Badia, A. et al. Self-assembled monolayers on gold nanoparticles. Chem.-Eur. J. 2, 359–363 (1996).

    CAS  Google Scholar 

  79. Templeton, A. C., Wuelfing, M. P. & Murray, R. W. Monolayer protected cluster molecules. Acc. Chem. Rev. 33, 27–36 (2000).

    CAS  Google Scholar 

  80. Cheng, W. L., Dong, S. J. & Wang, E. K. Synthesis and self-assembly of cetyltrimethylammonium bromide-capped gold nanoparticles. Langmuir 19, 9434–9439 (2003).

    CAS  Google Scholar 

  81. Alivisatos, A. P. et al. Organization of 'nanocrystal molecules' using DNA. Nature 382, 609–611 (1996).

    CAS  Google Scholar 

  82. Maye, M. M., Kumara, M. T., Nykypanchuk, D., Sherman, W. B. & Gang, O. Switching binary states of nanoparticle superlattices and dimer clusters by DNA strands. Nature Nanotech. 5, 116–120 (2010).

    CAS  Google Scholar 

  83. Maye, M. M., Nykypanchuk, D., Cuisinier, M., van der Lelie, D. & Gang, O. Stepwise surface encoding for high-throughput assembly of nanoclusters. Nature Mater. 8, 388–391 (2009).

    CAS  Google Scholar 

  84. Nykypanchuk, D., Maye, M. M., van der Lelie, D. & Gang, O. DNA-guided crystallization of colloidal nanoparticles. Nature 451, 549–552 (2008).

    CAS  Google Scholar 

  85. Park, S. Y. et al. DNA-programmable nanoparticle crystallization. Nature 451, 553–556 (2008).

    CAS  Google Scholar 

  86. Cheng, W. et al. Probing in real time the soft crystallization of DNA-capped nanoparticles. Angew. Chem. Int. Ed. 49, 380–384 (2010).

    CAS  Google Scholar 

  87. Cheng, W. et al. Free-standing nanoparticle superlattice sheets controlled by DNA. Nature Mater. 8, 519–525 (2009).

    CAS  Google Scholar 

  88. Verwey, E. J. W. & Overbeek, J. Theory of the Stability of Lyophobic Colloids Vol. 1 (Elsevier, 1948).

    Google Scholar 

  89. Derjaguin, B. V. & Landau, L. Theory of stability of highly charged lyophobic sols and adhesion of highly charged particles in solutions of electrolytes. Acta Physicochim. URS 14, 633–652 (1941).

    Google Scholar 

  90. Lin, C., Liu, Y., Rinker, S. & Yan, H. DNA tile based self-assembly: Building complex nanoarchitectures. ChemPhysChem 7, 1641–1647 (2006).

    CAS  Google Scholar 

  91. LaBean, T. H. & Li, H. Constructing novel materials with DNA. Nano Today 2, 26–35 (2007).

    Google Scholar 

  92. Li, H., Park, S. H., Reif, J. H., LaBean, T. H. & Yan, H. DNA-templated self-assembly of protein and nanoparticle linear arrays. J. Am. Chem. Soc. 126, 418–419 (2003).

    Google Scholar 

  93. Sharma, J., Chhabra, R., Liu, Y., Ke, Y. & Yan, H. DNA-templated self-assembly of two-dimensional and periodical gold nanoparticle arrays. Angew. Chem. Int. Ed. 45, 730–735 (2006).

    CAS  Google Scholar 

  94. Zheng, J. et al. Two-dimensional nanoparticle arrays show the organizational power of robust DNA motifs. Nano Lett. 6, 1502–1504 (2006).

    CAS  Google Scholar 

  95. Ding, B. et al. Gold nanoparticle self-similar chain structure organized by DNA origami. J. Am. Chem. Soc. 132, 3248–3249 (2010).

    CAS  Google Scholar 

  96. Kershner, R. J. et al. Placement and orientation of individual DNA shapes on lithographically patterned surfaces. Nature Nanotech. 4, 557–561 (2009).

    CAS  Google Scholar 

  97. Hung, A. M. et al. Large-area spatially ordered arrays of gold nanoparticles directed by lithographically confined DNA origami. Nature Nanotech. 5, 121–126 (2010).

    CAS  Google Scholar 

  98. Loweth, C. J., Caldwell, W. B., Peng, X., Alivisatos, A. P. & Schultz, P. G. DNA-based assembly of gold nanocrystals. Angew. Chem. Int. Ed. 38, 1808–1812 (1999).

    CAS  Google Scholar 

  99. Zanchet, D., Micheel, C. M., Parak, W. J., Gerion, D. & Alivisatos, A. P. Electrophoretic isolation of discrete Au nanocrystal/DNA conjugates. Nano Lett. 1, 32–35 (2001).

    CAS  Google Scholar 

  100. Claridge, S. A., Liang, H. W., Basu, S. R., Fréchet, J. M. J. & Alivisatos, A. P. Isolation of discrete nanoparticle-DNA conjugates for plasmonic applications. Nano Lett. 8, 1202–1206 (2008).

    CAS  Google Scholar 

  101. Lim, D-K., Jeon, K-S., Kim, H. M., Nam, J-M. & Suh, Y. D. Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection. Nature Mater. 9, 60–67 (2010).

    CAS  Google Scholar 

  102. Mastroianni, A. J., Claridge, S. A. & Alivisatos, A. P. Pyramidal and chiral groupings of gold nanocrystals assembled using DNA scaffolds. J. Am. Chem. Soc. 131, 8455–8459 (2009).

    CAS  Google Scholar 

  103. Mucic, R. C., Storhoff, J. J., Mirkin, C. A. & Letsinger, R. L. DNA-directed synthesis of binary nanoparticle network materials. J. Am. Chem. Soc. 120, 12674–12675 (1998).

    CAS  Google Scholar 

  104. Xu, X., Rosi, N. L., Wang, Y., Huo, F. & Mirkin, C. A. Asymmetric functionalization of gold nanoparticles with oligonucleotides. J. Am. Chem. Soc. 128, 9286–9287 (2006).

    CAS  Google Scholar 

  105. Pal, S., Sharma, J., Yan, H. & Liu, Y. Stable silver nanoparticle–DNA conjugates for directed self-assembly of core-satellite silver–gold nanoclusters. Chem. Commun. 6059–6061 (2009).

  106. Aldaye, F. A. & Sleiman, H. F. Dynamic DNA templates for discrete gold nanoparticle assemblies: Control of geometry, modularity, write/erase and structural switching. J. Am. Chem. Soc. 129, 4130–4131 (2007).

    CAS  Google Scholar 

  107. Aldaye, F. A. & Sleiman, H. F. Sequential self-assembly of a DNA hexagon as a template for the organization of gold nanoparticles. Angew. Chem. Int. Ed. 45, 2204–2209 (2006).

    CAS  Google Scholar 

  108. Gu, H., Chao, J., Xiao, S-J. & Seeman, N. C. A proximity-based programmable DNA nanoscale assembly line. Nature 465, 202–205 (2010).

    CAS  Google Scholar 

  109. Weizmann, Y., Braunschweig, A. B., Wilner, O. I., Cheglakov, Z. & Willner, I. A polycatenated DNA scaffold for the one-step assembly of hierarchical nanostructures. Proc. Natl Acad. Sci. USA 105, 5289–5294 (2008).

    CAS  Google Scholar 

  110. Chen, W. et al. Nanoparticle superstructures made by polymerase chain reaction: Collective interactions of nanoparticles and a new principle for chiral materials. Nano Lett. 9, 2153–2159 (2009).

    CAS  Google Scholar 

  111. Deng, Z., Tian, Y., Lee, S-H., Ribbe, A. E. & Mao, C. DNA-encoded self-assembly of gold nanoparticles into one-dimensional arrays. Angew. Chem. Int. Ed. 44, 3582–3585 (2005).

    CAS  Google Scholar 

  112. Beyer, S., Nickels, P. & Simmel, F. C. Periodic DNA nanotemplates synthesized by rolling circle amplification. Nano Lett. 5, 719–722 (2005).

    CAS  Google Scholar 

  113. Stearns, Linda A. et al. Template-directed nucleation and growth of inorganic nanoparticles on DNA scaffolds. Angew. Chem. Int. Ed. 48, 8494–8496 (2009).

    CAS  Google Scholar 

  114. Warner, M. G. & Hutchison, J. E. Linear assemblies of nanoparticles electrostatically organized on DNA scaffolds. Nature Mater. 2, 272–277 (2003).

    CAS  Google Scholar 

  115. Wang, G. & Murray, R. W. Controlled assembly of monolayer-protected gold clusters by dissolved DNA. Nano Lett. 4, 95–101 (2003).

    Google Scholar 

  116. Lo, P. K. et al. Loading and selective release of cargo in DNA nanotubes with longitudinal variation. Nature Chem. 2, 319–328 (2010).

    CAS  Google Scholar 

  117. Cheng, W. L., Park, N., Walter, M. T., Hartman, M. R. & Luo, D. Nanopatterning self-assembled nanoparticle superlattices by moulding microdroplets. Nature Nanotech. 3, 682–690 (2008).

    CAS  Google Scholar 

  118. Sonnichsen, C., Reinhard, B. M., Liphardt, J. & Alivisatos, A. P. A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nature Biotechnol. 23, 741–745 (2005).

    Google Scholar 

  119. Seelig, J. et al. Nanoparticle-induced fluorescence lifetime modification as nanoscopic ruler: Demonstration at the single molecule level. Nano Lett. 7, 685–689 (2007).

    CAS  Google Scholar 

  120. Maye, M. M., Gang, O. & Cotlet, M. Photoluminescence enhancement in CdSe/ZnS-DNA linked-Au nanoparticle heterodimers probed by single molecule spectroscopy. Chem. Commun. 46, 6111–6113 (2010).

    CAS  Google Scholar 

  121. Xiong, H., Sfeir, M. Y. & Gang, O. Three-dimensional dynamically tunable multicomponent superlattices. Nano Lett. 10, 4456–4462 (2010).

    CAS  Google Scholar 

  122. Maune, H. T. et al. Self-assembly of carbon nanotubes into two-dimensional geometries using DNA origami templates. Nature Nanotech. 5, 61–66 (2010).

    CAS  Google Scholar 

  123. Kim, J-Y. & Lee, J-S. Synthesis and thermally reversible assembly of DNA-gold nanoparticle cluster conjugates. Nano Lett. 9, 4564–4569 (2009).

    CAS  Google Scholar 

Download references

Acknowledgements

W.L.C. acknowledges financial support from the New Staff Member Research Fund awarded by the Faculty of Engineering, Monash University. S.J.T. is a recipient of the National Science Scholarship awarded by the Agency for Science, Technology and Research, Singapore (A-STAR). M.J.C. is supported by the IGERT Program of the National Science Foundation under Agreement no. DGE-0654112, administered by the Nanobiotechnology Center at Cornell University. D.L. acknowledges financial support from NYSTAR and the NSF CAREER award (grant number: 0547330).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenlong Cheng.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, S., Campolongo, M., Luo, D. et al. Building plasmonic nanostructures with DNA. Nature Nanotech 6, 268–276 (2011). https://doi.org/10.1038/nnano.2011.49

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2011.49

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing