Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A sub-1-volt nanoelectromechanical switching device

Abstract

Nanoelectromechanical (NEM) switches1,2,3,4,5,6 have received widespread attention as promising candidates in the drive to surmount the physical limitations currently faced by complementary metal oxide semiconductor technology. The NEM switch has demonstrated superior characteristics including quasi-zero leakage behaviour1, excellent density capability2 and operation in harsh environments3. However, an unacceptably high operating voltage (4–20 V) has posed a major obstacle in the practical use of the NEM switch in low-power integrated circuits. To utilize the NEM switch widely as a core device component in ultralow power applications7,8,9,10,11, the operation voltage needs to be reduced to 1 V or below. However, sub-1 V actuation has not yet been demonstrated because of fabrication difficulties and irreversible switching failure caused by surface adhesion. Here, we report the sub-1 V operation of a NEM switch through the introduction of a novel pipe clip device structure and an effective air gap fabrication technique. This achievement is primarily attributed to the incorporation of a 4-nm-thick air gap, which is the smallest reported so far for a NEM switch generated using a ‘top-down’ approach. Our structure and process can potentially be utilized in various nanogap-related applications, including NEM switch-based ultralow-power integrated circuits, NEM resonators12,13, nanogap electrodes for scientific research14 and sensors15.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the NEM switch and operation scheme.
Figure 2: Comparison of operating voltage for plane and pipe clip structures.
Figure 3: The fabricated two-terminal NEM switch.
Figure 4: IV characteristics of the two-terminal NEM switch.

Similar content being viewed by others

References

  1. Jang, J. E. et al. Nanoscale memory cell based on a nanoelectromechanical switched capacitor. Nature Nanotech. 3, 26–30 (2008).

    Article  CAS  Google Scholar 

  2. Rueckes, T. et al. Carbon nanotube-based nonvolatile random access memory for molecular computing. Science 289, 94–97 (2000).

    Article  CAS  Google Scholar 

  3. Lee, T-H., Bhunia, S. & Mehregany, M. Electromechanical computing at 500 °C with silicon carbide. Science 329, 1316–1318 (2010).

    Article  CAS  Google Scholar 

  4. Lee, S. W. et al. A three-terminal carbon nanorelay. Nano. Lett. 4, 2027–2030 (2004).

    Article  CAS  Google Scholar 

  5. Jang, W. W. et al. Fabrication and characterization of a nanoelectromechanical switch with 15-nm-thick suspension air gap. Appl. Phys. Lett. 92, 103110 (2008).

    Article  Google Scholar 

  6. Lee, S. W., Park, S. J., Campbell, E. E. B. & Park, Y. W. A fast and low-power microelectromechanical system-based non-volatile memory device. Nature Commun. 2, 220 (2010).

    Article  Google Scholar 

  7. Raghunathan, V., Kansal, A., Hsu, J., Friedman, J. & Srivastava, M. Design considerations for solar energy harvesting wireless embedded systems. Proc. IPSN, 457–462 (2005).

  8. Service, R. F. Nanogenerators tap waste energy to power ultrasmall electronics. Science 328, 304–305 (2010).

    Article  CAS  Google Scholar 

  9. Xu, S. et al. Self-powered nanowire devices. Nature Nanotech. 5, 366–373 (2010).

    Article  CAS  Google Scholar 

  10. Tian, B. Z. et al. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449, 885–890 (2007).

    Article  CAS  Google Scholar 

  11. Yang, R., Qin, Y., Dai, L. & Wang, Z. L. Power generation with laterally packaged piezoelectric fine wires. Nature Nanotech. 4, 34–39 (2009).

    Article  CAS  Google Scholar 

  12. Naik, A. K., Hanay, M. S., Hiebert, W. K., Feng, X. L. & Roukes, M. L. Towards single-molecule nanomechanical mass spectrometry. Nature Nanotech. 4, 445–450 (2009).

    Article  CAS  Google Scholar 

  13. Ekinci, K. L. & Roukes, M. L. Nanoelectromechanical systems. Rev. Sci. Instrum. 76, 061101 (2005).

    Article  Google Scholar 

  14. Ward, D. R., Hűser, F., Pauly, F., Cuevas, J. C. & Natelson, D. Optical rectification and field enhancement in a plasmonic nanogap. Nature Nanotech. 5, 732–736 (2010).

    Article  CAS  Google Scholar 

  15. Im, H., Huang, X-J., Gu, B. & Choi, Y-K. A dielectric-modulated field-effect transistor for biosensing. Nature Nanotech. 2, 430–434 (2007).

    Article  CAS  Google Scholar 

  16. Rebeiz, G. M. RF MEMS: Theory, Design and Technology (Wiley, 2003).

    Book  Google Scholar 

  17. Akarvardar, K. et al. Design considerations for complementary nanoelectromechanical logic gates. IEEE IEDM Tech. Digest, 299–302 (2007).

  18. Loh, O. Y. & Espinosa, H. D. Nanoelectromechanical contact switches. Nature Nanotech. 7, 283–295 (2012).

    Article  CAS  Google Scholar 

  19. Dussopt, L. & Rebeiz, G. M. Intermodulation distortion and power handling in RF MEMS switches, varactors and tunable filters. IEEE Trans. Microw. Theory Tech. 51, 1247–1256 (2003).

    Article  Google Scholar 

  20. Choi, W. Y., Kam, H., Lee, D., Lai, J. & King, T-J. Compact nanoelectro-mechanical non-volatile memory (NEMory) for 3D integration. IEEE IEDM Tech. Digest, 603–606 (2007).

  21. Choi, S-J. et al. Transformable functional nanoscale building blocks with wafer-scale silicon nanowires. Nano Lett. 11, 854–859 (2011).

    Article  CAS  Google Scholar 

  22. Li, B. T., Hu, W. & Zhu, D. Nanogap electrodes. Adv. Mater. 22, 286–300 (2010).

    Article  Google Scholar 

  23. Johnston, D. E., Strachan, D. R. & Johnson, A. T. C. Parallel fabrication of nanogap electrodes. Nano Lett. 7, 2774–2777 (2007).

    Article  CAS  Google Scholar 

  24. Yasutake, Y. et al. Simultaneous fabrication of nanogap gold electrodes by electroless gold plating using a common medical liquid. Appl. Phys. Lett. 91, 203107 (2007).

    Article  Google Scholar 

  25. Choi, Y-K., King, T-J. & Hu, C. Nanoscale CMOS spacer FinFET for the terabit era. IEEE Electron. Dev. Lett. 23, 25–27 (2002).

    Article  CAS  Google Scholar 

  26. Horstmann, J. T., Hilleringmnn, U. & Goser, K. F. Matching analysis of deposition defined 50-nm MOSFET. IEEE Trans. Electron. Dev. 45, 299–306 (1998).

    Article  CAS  Google Scholar 

  27. Stern, E. et al. Label-free immunodetection with CMOS-compatible semiconducting nanowires. Nature 445, 519–522 (2007).

    Article  CAS  Google Scholar 

  28. Mungekar, H. P. & Lee, Y. S. High density plasma chemical vapor deposition gap-fill mechanisms. J. Vac. Sci. Technol. B 24, L11 (2006).

    Article  CAS  Google Scholar 

  29. Davidson, B. D., Seghete, D., George, S. M. & Bright, V. M. ALD tungsten NEMS switches and tunneling devices. Sens. Actuat. A 166, 269–276 (2011).

    Article  CAS  Google Scholar 

  30. Lee, J. O. et al. 3-terminal nanoelectromechanical switching device in insulating liquid media for low voltage operation and reliability improvement. IEEE IEDM Tech. Digest, 227–230 (2009).

Download references

Acknowledgements

This work was supported by the Smart IT Convergence System Research Center, which is funded by the Ministry of Education, Science and Technology as a Global Frontier Project, and also partially supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (no. 20120000823). The authors would like to thank Yang-Kyu Choi for experimental support.

Author information

Authors and Affiliations

Authors

Contributions

J.O.L. conceived the idea and performed experimental work and data analysis. M-H.K. and J-S.O. contributed to the fabrication process. J.O.L., M-W.K. and Y-H.S. performed modelling and interpretation. H-H.Y. participated in data analysis. J-B.Y. inspired the research, with guidance, and participated in data analysis. The manuscript was written by J.O.L. and J-B.Y. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Jun-Bo Yoon.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2428 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, J., Song, YH., Kim, MW. et al. A sub-1-volt nanoelectromechanical switching device. Nature Nanotech 8, 36–40 (2013). https://doi.org/10.1038/nnano.2012.208

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2012.208

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing