Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The emergence of multifrequency force microscopy

Abstract

In atomic force microscopy a cantilever with a sharp tip attached to it is scanned over the surface of a sample, and information about the surface is extracted by measuring how the deflection of the cantilever — which is caused by interactions between the tip and the surface — varies with position. In the most common form of atomic force microscopy, dynamic force microscopy, the cantilever is made to vibrate at a specific frequency, and the deflection of the tip is measured at this frequency. But the motion of the cantilever is highly nonlinear, and in conventional dynamic force microscopy, information about the sample that is encoded in the deflection at frequencies other than the excitation frequency is irreversibly lost. Multifrequency force microscopy involves the excitation and/or detection of the deflection at two or more frequencies, and it has the potential to overcome limitations in the spatial resolution and acquisition times of conventional force microscopes. Here we review the development of five different modes of multifrequency force microscopy and examine its application in studies of proteins, the imaging of vibrating nanostructures, measurements of ion diffusion and subsurface imaging in cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cantilever dynamics in force microscopy.
Figure 2: Multifrequency AFM.
Figure 3: Topography and flexibility mapping of proteins.
Figure 4: Mapping high-frequency oscillations, ion diffusion and subsurface structures.

Similar content being viewed by others

References

  1. Binnig, G., Quate, C. F. & Gerber, C. Atomic force microscope. Phys. Rev. Lett. 56, 930–933 (1986).

    Article  CAS  Google Scholar 

  2. Meyer, G. & Amer, N. M. Novel optical approach to atomic force microscopy. Appl. Phys. Lett. 53, 1045–1047 (1988).

    Google Scholar 

  3. Garcia, R. & Perez, R. Dynamic atomic force microscopy methods. Surf. Sci. Rep. 47, 197–301 (2002).

    CAS  Google Scholar 

  4. Giessibl, F. J. Advances in atomic force microscopy. Rev. Mod. Phys. 75, 949–983 (2003).

    CAS  Google Scholar 

  5. Parot, P. et al. Past, present and future of atomic force microscopy in life sciences and medicine. J. Mol. Recognit. 20, 418–431 (2007).

    CAS  Google Scholar 

  6. Garcia, R., Magerle, R. & Perez, R. Nanoscale compositional mapping with gentle forces. Nature Mater. 6, 405–411 (2007).

    CAS  Google Scholar 

  7. Ando, T., Uchihashi, T. & Fukuma, T. High-speed atomic force microscopy for nano-visualization of dynamic biomolecular processes. Prog. Surf. Sci. 83, 337–437 (2008).

    CAS  Google Scholar 

  8. Gan, Y. Atomic and subnanometer resolution in ambient conditions by atomic force microscopy. Surf. Sci. Rep. 64, 99–121 (2009).

    CAS  Google Scholar 

  9. Klinov, D. & Magonov, S. True molecular resolution in tapping-mode atomic force microscopy with high-resolution probes. Appl. Phys. Lett. 84, 2697–2699 (2004).

    CAS  Google Scholar 

  10. Fukuma, T., Kobayashi, K., Matsushige, K. & Yamada, H. True atomic resolution in liquid by frequency-modulation atomic force microscopy. Appl. Phys. Lett. 87, 034101 (2005).

    Google Scholar 

  11. Yamada, H. et al. Molecular resolution imaging of protein molecules in liquid using frequency modulation atomic force microscopy. Appl. Phys. Lett. 2, 095007 (2009).

    Google Scholar 

  12. Higgings, M. J., Sader, J. E. & Jarvis, S. P. Frequency modulation atomic force microscopy reveals individual intermediates with each unfolded I27 titin domain. Biophys. J. 90, 640–647 (2006).

    Google Scholar 

  13. Kuna, J. J. et al. The effect of nanometre-scale structure on interfacial energy. Nature Mater. 8, 837–842 (2009).

    CAS  Google Scholar 

  14. Baykara, M. Z., Schwendemann, T. C., Altman, E. I. & Schwarz, U. D. Three-dimensional atomic force microscopy: taking surface imaging to the next level. Adv. Mater. 22, 2838–2853 (2010).

    CAS  Google Scholar 

  15. Palermo, V., Palma, M. & Samori, P. Electronic characterization of organic thin films by Kelvin probe force microscopy. Adv. Mater. 18, 145–164 (2006).

    CAS  Google Scholar 

  16. Schwarz, A. & Wiesendanger, W. Magnetic sensitive force microscopy. Nano Today 3, 28–39 (2008).

    CAS  Google Scholar 

  17. Luan, B. & Robbins, M. O. Contact of single asperities with varying adhesion: comparing continuum mechanics to atomistic simulations. Phys. Rev. E 74, 026111 (2006).

    Google Scholar 

  18. Raman, A., Melcher, J. & Tung, R. Cantilever dynamics in atomic force microscopy. Nano Today 3, 20–27 (2008).

    CAS  Google Scholar 

  19. Stark, R. W. Bistability, higher harmonics and chaos in AFM. Mater. Today 13, 24–32 (September 2010).

    Google Scholar 

  20. Butt, H. J., Capella, B. & Kappl, M. Force measurements with the atomic force microscope: technique, interpretation and applications. Surf. Sci. Rep. 59, 1–152 (2005).

    CAS  Google Scholar 

  21. Bizarri, A. R. & Cannistraro, S. The application of atomic force spectroscopy to the study of biological complexes undergoing a biorecognition process. Chem. Soc. Rev. 39, 734–749 (2010).

    Google Scholar 

  22. Cross, S. E., Jin, Y-S., Rao, J. & Gimzewski, J. K. Nanomechanical analysis of cells from cancer patients. Nature Nanotech. 2, 780–783 (2007).

    CAS  Google Scholar 

  23. Goetz, J. G. et al. Biomechanical remodeling of the microenvironment by stromal caveolin-1 favors tumor invasion and metastasis. Cell 146, 148–163 (2011).

    CAS  Google Scholar 

  24. Arlett, J. L., Myers, E. B. & Roukes, M. L. Comparative advantages of mechanical biosensors. Nature Nanotech. 6, 203–215 (2011).

    CAS  Google Scholar 

  25. Gil-Santos, E. et al. Nanomechanical mass sensing and stiffness spectrometry based on two-dimensional vibrations of resonant nanowires. Nature Nanotech. 5, 641–645 (2010).

    CAS  Google Scholar 

  26. Garcia, R. Amplitude Modulation Atomic Force Microscopy (Wiley, 2010).

    Google Scholar 

  27. Butt, H. J. & Jascke, M. Calculation of thermal noise in atomic force microscopy. Nanotechnology 6, 1–7 (1995). This paper calculates the thermal noise of the cantilever by including the contributions from all the cantilever eigenmodes.

    Google Scholar 

  28. Rabe, U., Turner, I. & Arnold, W. Analysis of the high-frequency response of atomic force microscope levers. Appl. Phys. A 66, S277–S282 (1998).

    CAS  Google Scholar 

  29. Sader, J. E. Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope. J. Appl. Phys. 84, 64–76 (1998).

    CAS  Google Scholar 

  30. Dürig, U. Relations between interaction force and frequency shift in large-amplitude dynamic force microscopy. Appl. Phys. Lett. 75, 433–435 (1999).

    Google Scholar 

  31. Tamayo, J. Energy dissipation in tapping-mode scanning force microscopy with low quality factors. Appl. Phys. Lett. 75, 3569–3571 (1999).

    CAS  Google Scholar 

  32. Stark, R. W. & Heckel, W. M. Fourier transformed atomic force microscopy: tapping mode atomic force microscopy beyond the Hookian approximation. Surf. Sci. 457, 219–228 (2000).

    CAS  Google Scholar 

  33. Rodriguez, T. R. & Garcia, R. Tip motion in amplitude modulation (tapping-mode) atomic-force microscopy: comparison between continuous and point-mass models. Appl. Phys. Lett. 80, 1646–1648 (2002).

    CAS  Google Scholar 

  34. Rabe, U., Janser, K. & Arnold, W. Vibrations of free and surface-coupled atomic force microscope cantilevers: theory and experiment. Rev. Sci. Instrum. 67, 3281–3293 (1996).

    CAS  Google Scholar 

  35. Stark, R. W., Schitter, G., Stark, M., Guckenberger, R. & Stemmer, A. State-space model of freely vibrating and surface-coupled cantilever dynamics in atomic force microscopy. Phys. Rev. B 69, 085412 (2004).

    Google Scholar 

  36. Schaffer, T. E. & Fuchs, H. Optimized detection of normal vibration modes of atomic force microscope cantilevers with the optical beam deflection method. J. Appl. Phys. 97, 083524 (2005).

    Google Scholar 

  37. Hsu, J. C., Lee, H. L. & Chang, W. J. Flexural vibration frequency of atomic force microscope cantilevers using Timoshenko beam theory. Nanotechnology 18, 285503 (2007).

    Google Scholar 

  38. Melcher, J., Hu, S. & Raman, A. Equivalent point-mass models of continuous atomic force microscope probes. Appl. Phys. Lett. 91, 053101 (2007).

    Google Scholar 

  39. Cantrell, J. H. & Cantrell, S. A. Analytical model of the nonlinear dynamics of cantilever tip–sample surface interactions for various acoustic atomic force microscopies. Phys. Rev. B 77, 165409 (2008).

    Google Scholar 

  40. Kokavecz, J. & Mechler, A. Spring constant of microcantilevers in fundamental and higher eigenmodes. Phys. Rev. B 78, 172101 (2008).

    Google Scholar 

  41. Hahner, G. Dynamic spring constants for higher flexural modes of cantilever plates with applications to atomic force microscopy. Ultramicroscopy 110, 801–806 (2010).

    Google Scholar 

  42. Zypman, F. Internal damping for noncontact atomic force microscopy cantilevers. J. Vac. Sci. Technol. B 28, C4E24–C4E27 (2010).

    CAS  Google Scholar 

  43. Abbasi, M. & Mohammadi, A. K. A new model for investigating the flexural vibration of an atomic force microscope cantilever. Ultramicroscopy 110, 1374–1379 (2010).

    CAS  Google Scholar 

  44. Pishkenari, H. N. & Meghdari, A. Effects of higher oscillation modes on TM-AFM measurements. Ultramicroscopy 111, 107–116 (2011).

    CAS  Google Scholar 

  45. Kiracofe, D. & Raman, A. On eigenmodes, stiffness, and sensitivity of atomic force microscope cantilevers in air versus liquids. J. Appl. Phys. 107, 033506 (2009). Theoretical and experimental study of the influence of the tip mass on the sensitivity and stiffness of the cantilever eigenmodes.

    Google Scholar 

  46. Sahin, O. et al. High-resolution imaging of elastic properties using harmonic cantilevers. Sensor Actuat. A 114, 183–190 (2004).

    CAS  Google Scholar 

  47. Dürig, U. Interaction sensing in dynamic force microscopy. New J. Phys. 2, 5.1–5.12 (2000).

    Google Scholar 

  48. Hembacher, S., Giessibl, F. J. & Mannhart, J. Force microscopy with light-atom probes. Science 305, 380–383 (2004). First experimental result reporting the use of higher harmonics to enhance spatial resolution in force microscopy.

    CAS  Google Scholar 

  49. Wright, C. A. & Solares, S. D. On mapping subangstrom electron clouds with force microscopy. Nano Lett. 11, 5026–5033 (2011).

    CAS  Google Scholar 

  50. Xu, X., Melcher, J., Basak, S., Reinferberger, R. & Raman, A. Compositional contrast of biological materials in liquids using the momentary excitation of higher eigenmodes in dynamic AFM. Phys. Rev. Lett. 102, 060801 (2009).

    Google Scholar 

  51. Stark, M., Stark, R. W., Heckl, W. H. & Guckenberger, R. Inverting dynamic force microscopy: From signals to time-resolved interaction forces. Proc. Natl Acad. Sci. USA 99, 8473–8478 (2002). Method to obtain time-resolved forces by recording the frequency spectra (higher harmonics) of the tip motion.

    CAS  Google Scholar 

  52. Sarioglu, A. F. & Solgaard, O. Modeling, design, and analysis of interferometric cantilevers for time-resolved force measurements in tapping-mode atomic force microscopy. J. Appl. Phys. 109, 064316 (2011).

    Google Scholar 

  53. Parlak, Z. & Degertekin, F. L. Combined quantitative ultrasonic and time-resolved interaction force AFM imaging. Rev. Sci. Instrum. 82, 013703 (2011).

    CAS  Google Scholar 

  54. Sahin, O., Quate, C. F., Solgaard, O. & Atalar, A. An atomic force microscope tip designed to measure time-varying nanomechanical forces. Nature Nanotech. 2, 507–514 (2007). Measurement of time-resolved forces by using the higher harmonics of the torsional cantilever deflection. Torsional higher harmonics are easier to measure than those in the flexural deflection.

    Google Scholar 

  55. Rodriguez, T. R. & Garcia, R. Compositional mapping of surfaces in atomic force microscopy by excitation of the second normal mode of the cantilever. Appl. Phys. Lett. 84, 449–451 (2004). Numerical simulation-based study to enhance the force sensitivity in AFM by the simultaneous excitation of two eigenmodes. These simulations provided the framework for development of bimodal AFM.

    CAS  Google Scholar 

  56. Martinez, N. F. et al. Bimodal atomic force microscopy imaging of isolated antibodies in air and liquid. Nanotechnology 19, 384011 (2008).

    CAS  Google Scholar 

  57. Proksch, R. Multifrequency, repulsive-mode amplitude-modulated atomic force microscopy. Appl. Phys. Lett. 89, 113121 (2006).

    Google Scholar 

  58. Kawai, S. et al. Systematic achievement of improved atomic-scale contrast via bimodal dynamic force microscopy. Phys. Rev. Lett. 103, 220801 (2009).

    Google Scholar 

  59. Aksoy, M. D. & Atalar, A. Force spectroscopy using bimodal frequency modulation atomic force microscopy. Phys. Rev. B 83, 075416 (2011).

    Google Scholar 

  60. Lozano, J. R. & Garcia, R. Theory of multifrequency AFM. Phys. Rev. Lett. 100, 076102 (2008).

    Google Scholar 

  61. Martinez-Martin, D., Herruzo, E. T., Dietz, C., Gomez-Herrero, J. & Garcia, R. Noninvasive protein structural fexibility mapping by bimodal dynamic force microscopy. Phys. Rev. Lett. 106, 198101 (2011).

    CAS  Google Scholar 

  62. Solares, S. D. & Chawla, G. Frequency response of higher cantilever eigenmodes in bimodal and trimodal tapping mode atomic force microscopy. Meas. Sci. Technol. 21, 125502 (2010).

    Google Scholar 

  63. Platz, D., Tholén, E. A. & Haviland, D. B. Intermodulation atomic force microscopy. Appl. Phys. Lett. 92, 153106 (2008).

    Google Scholar 

  64. Hutter, C., Platz, D., Tholen, E. A., Hansson, T. H. & Haviland, D. B. Reconstructing nonlinearities with intermodulation spectroscopy. Phys. Rev. Lett. 104, 050801 (2010).

    Google Scholar 

  65. Jesse, S., Kalinin, S. V., Proksch, R., Baddorf, A. P. & Rodriguez, B. J. Energy dissipation measurements on the nanoscale: band excitation method in scanning probe microscopy. Nanotechnology 18, 435503 (2007).

    Google Scholar 

  66. Agarwal, P. & Salapaka, M. V. Real time estimation of equivalent cantilever parameters in tapping mode atomic force microscopy. Appl. Phys. Lett. 95, 083113 (2009).

    Google Scholar 

  67. Thota, P., MacLaren, S. & Dankowitz, H. Controlling bistability in tapping mode atomic force microscopy using dual-frequency excitation. Appl. Phys. Lett. 91, 093108 (2007).

    Google Scholar 

  68. Dick, A. J. & Solares, S. D. Utilizing off-resonance and dual-frequency excitation to distinguish attractive and repulsive surface forces in atomic force microscopy. J. Comp. Nonlin. Dyn. 6, 031005 (2011).

    Google Scholar 

  69. Kawai, S., Kitamura, S., Kobayashi, D., Meguro, S. & Kawakatsu, H. An ultrasmall amplitude operation of dynamic force microscopy with second flexural mode. Appl. Phys. Lett. 86, 193107 (2005).

    Google Scholar 

  70. Killgore, J. P., Kelly, J. Y., Stafford, C. M., Fasolka, M. J. & Hurley, D. C. Quantitative subsurface contact resonance force microscopy of model polymer nanocomposites. Nanotechnology 22, 175706 (2011).

    Google Scholar 

  71. Pfeiffer, O. et al. Using higher flexural modes in non-contact force microscopy. Appl. Surf. Sci. 157, 337–342 (2000).

    CAS  Google Scholar 

  72. Dietz, C., Herruzo, E. T., Lozano, J. R. & Garcia, R. Nanomechanical coupling enables detection and imaging of 5 nm superparamagnetic particles in liquid. Nanotechnology 22, 125708 (2011).

    Google Scholar 

  73. Stark, M., Stark, R. W., Heckl, W. M. & Guckenberger, R. Spectroscopy of the anharmonic cantilever oscillations in tapping-mode atomic-force microscopy. Appl. Phys. Lett. 77, 3293–3295 (2000).

    CAS  Google Scholar 

  74. Sahin, O., Quate, C. F., Solgaard, O. & Atalar, A. Resonant harmonic response in tapping-mode atomic force microscopy. Phys. Rev. B 69, 165416 (2004).

    Google Scholar 

  75. Crittenden, S., Raman, A. & Reifenberger, R. Probing attractive forces at the nanoscale using higher-harmonic dynamic force microscopy. Phys. Rev. B 72, 235422 (2005).

    Google Scholar 

  76. Balantekin, M. & Atalar, A. Enhancing higher harmonics of a tapping cantilever by excitation at a submultiple of its resonance frequency. Phys. Rev. B 71, 125416 (2005).

    Google Scholar 

  77. Legleiter, J., Park, M., Cusick, B. & Kowalewski, T. Scanning probe acceleration microscopy (SPAM) in fluids: mapping mechanical properties of surfaces at the nanoscale. Proc. Natl Acad. Sci. USA 103, 4813–4818 (2006).

    CAS  Google Scholar 

  78. Preiner, J., Tang, J., Pastushenko, V. & Hinterdorfer, P. Higher harmonic atomic force microscopy: imaging of biological membranes in liquid. Phys. Rev. Lett. 99, 046102 (2007).

    Google Scholar 

  79. Turner, R. D., Kirkham, J., Devine, D. & Thomson, N. H. Second harmonic atomic force microscopy of living Staphylococcus aureus bacteria. Appl. Phys. Lett. 94, 043901 (2009).

    Google Scholar 

  80. Raman, A. et al. Mapping nanomechanical properties of live cells using multiharmonic atomic force microscopy. Nature Nanotech. 6, 809–813 (2011).

    CAS  Google Scholar 

  81. Martinez, N. F., Patil, S., Lozano, J. R. & Garcia, R. Enhanced compositional sensitivity in atomic force microscopy by the excitation of the first two flexural modes. Appl. Phys. Lett. 89, 153115 (2006).

    Google Scholar 

  82. Patil, S., Martinez, N. F., Lozano, J. R. & Garcia, R. Force microscopy imaging of individual protein molecules with sub-pico Newton force sensitivity. J. Mol. Recognit. 20, 516–523 (2007).

    CAS  Google Scholar 

  83. Dietz, C. et al. Nanotomography with enhanced resolution using bimodal atomic force microscopy. Appl. Phys. Lett. 92, 143107 (2008).

    Google Scholar 

  84. Stark, R. W. Dynamics of repulsive dual-frequency atomic force microscopy. Appl. Phys. Lett. 94, 063109 (2009).

    Google Scholar 

  85. Albonetti, C., Casalini, S., Borgatti, F., Floreano, L. & Biscarini, F. Morphological and mechanical properties of alkanethiol SAM investigated by bimodal AFM. Chem. Comm. 47, 8823–8825 (2011).

    CAS  Google Scholar 

  86. Li, W., Cleveland, J. P. & Proksch, R. Bimodal magnetic force microscopy: separation of short and long range forces. Appl. Phys. Lett. 94, 163118 (2009).

    Google Scholar 

  87. Stark, R. W., Naujoks, N. & Stemmer, A. Multifrequency electrostatic force microscopy in the repulsive regime. Nanotechnology 18, 065502 (2007).

    Google Scholar 

  88. Bostanci, U., Abak, M. K., Aktas, O. & Dâna, A. Nanoscale charging hysteresis measurements by multifrequency electrostatic force spectroscopy. Appl. Phys. Lett. 92, 093108 (2008).

    Google Scholar 

  89. Kawai, S. et al. Ultrasensitive detection of lateral atomic-scale interactions on graphite (0001) via bimodal dynamic force measurements. Phys. Rev. B 81, 085420 (2010). This paper reports bimodal excitation and detection of flexural and torsional modes compatible with frequency modulation AFM and ultrahigh-vacuum environments.

    Google Scholar 

  90. Balke, N. et al. Nanoscale mapping of ion diffusion in a lithium-ion battery cathode. Nature Nanotech. 5, 749–754 (2010). The multiparameter acquisition capabilities of the band excitation method are exploited to generate nanoscale maps of lithium-ion migration in batteries.

    CAS  Google Scholar 

  91. Balke, N. et al. Real space mapping of Li-ion transport in amorphous Si anodes with nanometer resolution. Nano Lett. 10, 3420–3425 (2010).

    CAS  Google Scholar 

  92. Sahin, O. & Erina, N. High-resolution and large dynamic range nanomechanical mapping in tapping-mode atomic force microscopy. Nanotechnology 19, 445717 (2008).

    Google Scholar 

  93. Dong, M., Husale, S. & Sahin, O. Determination of protein structural flexibility by microsecond force spectroscopy. Nature Nanotech. 4, 514–517 (2009).

    CAS  Google Scholar 

  94. Husale, S., Persson, H. H. J. & Sahin, O. DNA nanomechanics allows direct digital detection of complementary DNA and microRNA targets. Nature 462, 1075–1078 (2009).

    CAS  Google Scholar 

  95. Dong, M. & Sahin, O. A nanomechanical interface to rapid single-molecule interactions. Nature Commun. 2, 247 (2011).

    Google Scholar 

  96. Dokukin, M. E., Guz, N. V., Gaikwad, R. M., Woodworth, C. D. & Sokolov, I. Cell surface as a fractal: normal and cancerous cervical cells demonstrate different fractal behavior of surface adhesion maps at the nanoscale. Phys. Rev. Lett. 107, 028101 (2011).

    CAS  Google Scholar 

  97. Kolosov, O. & Yamanaka, K. Nonlinear detection of ultrasonic vibrations in an atomic-force microscope. Jpn. J. Appl. Phys. 32, L1095–L1098 (1993).

    CAS  Google Scholar 

  98. Hu, S., Su, C. & Arnold, W. J. Imaging of subsurface structures using atomic force acoustic microscopy at GHz frequencies. J. Appl. Phys. 109, 084324 (2011).

    Google Scholar 

  99. Shekhawat, G. S. & Dravid, V. P. Nanoscale imaging of buried structures via scanning near-field ultrasound holography. Science 310, 89–92 (2005). First report on nanomechanical holography experiments, providing images of subsurface features in microelectronic devices and cells.

    CAS  Google Scholar 

  100. Tetard, L., Passian, A. & Thundat, T. New modes for subsurface atomic force microscopy through nanomechanical coupling. Nature Nanotech. 5, 105–109 (2010).

    CAS  Google Scholar 

  101. Tetard, L. et al. Elastic phase response of silica nanoparticles buried in soft matter. Appl. Phys. Lett. 93, 133113 (2008).

    Google Scholar 

  102. Tetard, L. et al. Imaging nanoparticles in cells by nanomechanical holography. Nature Nanotech. 3, 501–505 (2008).

    CAS  Google Scholar 

  103. Shekhawat, G., Srivastava, A., Avashty, S. & Dravid, V. Ultrasound holography for noninvasive imaging of buried defects and interfaces for advanced interconnect architectures. Appl. Phys. Lett. 95, 263101 (2009).

    Google Scholar 

  104. Garcia-Sanchez, D., Paulo, A. S., Esplandiu, M. J., Perez-Murano, F. & Bachtold, A. Mechanical detection of carbon nanotube resonator vibrations. Phys. Rev. Lett. 99, 085501 (2007).

    CAS  Google Scholar 

  105. Garcia-Sanchez, D. et al. Imaging mechanical vibrations in suspended graphene sheets. Nano Lett. 8, 1399–1403 (2008).

    CAS  Google Scholar 

  106. Garcia, R. Images from below the surface. Nature Nanotech. 5, 101–102 (2010).

    CAS  Google Scholar 

  107. Diebold, A. C. Subsurface imaging with scanning ultrasound holography. Science 310, 61–62 (2005).

    CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for financial support from the Ministerio de Ciencia e Innovación (CSD2010-00024, MAT2009-08650).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Garcia.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garcia, R., Herruzo, E. The emergence of multifrequency force microscopy. Nature Nanotech 7, 217–226 (2012). https://doi.org/10.1038/nnano.2012.38

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2012.38

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing