Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nanoelectromechanical contact switches

Abstract

Nanoelectromechanical (NEM) switches are similar to conventional semiconductor switches in that they can be used as relays, transistors, logic devices and sensors. However, the operating principles of NEM switches and semiconductor switches are fundamentally different. These differences give NEM switches an advantage over semiconductor switches in some applications — for example, NEM switches perform much better in extreme environments — but semiconductor switches benefit from a much superior manufacturing infrastructure. Here we review the potential of NEM-switch technologies to complement or selectively replace conventional complementary metal-oxide semiconductor technology, and identify the challenges involved in the large-scale manufacture of a representative set of NEM-based devices.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparing the performance of NEM technology with CMOS and other emerging technologies.
Figure 2: Basic operating characteristics of NEM switches.
Figure 3: Different approaches to manufacturing processes for NEM switches.
Figure 4: Common failure modes for NEM switches.

References

  1. International Technology Roadmap for Semiconductors (ITRS, 2009); http://www.itrs.net/home.htmlThe ITRS discusses the expected needs of the semiconductor industry, and the challenges facing the industry, over the next 15 years. New editions are published in odd years, and updates are published in even years.

  2. International Roadmap Committee Future Memory Devices Workshop Summary (2010); http://www.itrs.net/Links/2010ITRS/Home2010.htm

  3. Zhou, Y., Thekkel, S. & Bhunia, S. in Proc. 2007 ACM/IEEE Int. Symp. on Low Power Electron. Des. 14–19 (IEEE, 2007).

    Google Scholar 

  4. Dadgour, H. F. & Banerjee, K. Hybrid NEMS–CMOS integrated circuits: A novel strategy for energy-efficient designs Comp. Digital Techn. 3, 593–608 (2009). This paper presents a comprehensive proposal for hybrid NEM–CMOS devices, including the feasibility of integrating NEMS and CMOS, and predicted improvements in power consumption compared with conventional CMOS.

    Google Scholar 

  5. Abele, N. et al. in IEEE Int. Elec. Dev. Meeting 2005; http://dx.doi.org/10.1109/IEDM.2005.1609384

    Google Scholar 

  6. Dadgour, H. F. & Banerjee, K. in Proc. 2007 ACM/IEEE Design Automation Conf. 306–311 (IEEE, 2007).

    Google Scholar 

  7. Yousif, M., Lundgren, P., Ghavanini, F., Enoksson, P. & Bengtsson, S. CMOS considerations in nanoelectromechanical carbon nanotube-based switches. Nanotechnology 19, 285204 (2008).

    CAS  Google Scholar 

  8. Jonsson, L., Axelsson, S., Nord, T., Viefers, S. & Kinaret, J. High frequency properties of a CNT-based nanorelay. Nanotechnology 15, 1497–1502 (2004).

    CAS  Google Scholar 

  9. Lovellette, M. N. et al. in Proc. 2004 IEEE Aerospace Conf. 2300–2305 (IEEE, 2004).

    Google Scholar 

  10. Lee, T-H., Bhunia, S. & Mehregany, M. Electromechanical computing at 500 °C with silicon carbide. Science 329, 1316–1318 (2010).

    CAS  Google Scholar 

  11. Dadgour, H. F., Hussain, M. M. & Banerjee, K. in Proc. 2010 ACM/IEEE Int. Symp. on Low Power Electron. Des. 7–12 (ACM, 2010).

    Google Scholar 

  12. Dadgour, H. F., Hussain, M. M., Smith, C. & Banerjee, K. in Proc. 2010 ACM/IEEE Design Automation Conf. 893–896 (ACM, 2010).

    Google Scholar 

  13. Choi, S-J. et al. Transformable functional nanoscale building blocks with wafer-scale silicon nanowires. Nano Lett. 11, 854–859 (2011).

    CAS  Google Scholar 

  14. Zhu, H. Nanoelectromechanical digital inverter. US patent 7,612,270 (2009).

  15. Yun, E-J. et al. Multibit electro-mechanical memory device having cantilever electrodes. US patent 7,973,343 (2011).

  16. Bertin, C., Rueckes, T. & Segal, B. EEPROMS using carbon nanotubes for cell storage. US patent 7,528,437 (2009).

  17. Segal, B., Brock, D. & Rueckes, T. Electromechanical memory array using nanotube ribbons and method for making same. US patent 7,511,318 (2009).

  18. Pinkerton, J., Harlan, J. & Mullen, J. Nanoelectromechanical transistors and switch systems. US patent 7,256,063 (2007).

  19. Jang, W. W. et al. NEMS switch with 30-nm-thick beam and 20-nm-thick air-gap for high density non-volatile memory applications. Solid State Electron. 52, 1578–1583 (2008).

    CAS  Google Scholar 

  20. Jang, J. et al. Nanoelectromechanical switches with vertically aligned carbon nanotubes. Appl. Phys. Lett. 87, 163114 (2005). The novel use of vertically aligned carbon nanotubes for NEM switches is reported here.

    Google Scholar 

  21. Kinaret, J., Nord, T. & Viefers, S. A carbon-nanotube-based nanorelay. Appl. Phys. Lett. 82, 1287–1289 (2003).

    CAS  Google Scholar 

  22. Smith, R. et al. in Proc. 2007 IEEE Aerospace Conf. 1–5 (IEEE, 2007).

    Google Scholar 

  23. Rueckes, T. et al. Carbon nanotube-based nonvolatile random access memory for molecular computing. Science 289, 94–97 (2000). This paper reports one of the first demonstrations of functional NEM switches constructed from individual nanostructures. This technology is now being pursued by Nantero..

    CAS  Google Scholar 

  24. Xiang, W. & Lee, C. Nanoelectromechanical torsion switch of low operation voltage for nonvolatile memory application. Appl. Phys. Lett. 96, 193113 (2010).

    Google Scholar 

  25. Li, Q., Koo, S-M., Edelstein, M., Suehle, J. & Richter, C. Silicon nanowire electromechanical switches for logic device application. Nanotechnology 18, 315202 (2007).

    Google Scholar 

  26. Ziegler, K. et al. Bistable nanoelectromechanical devices. Appl. Phys. Lett. 84, 4074–4076 (2004).

    CAS  Google Scholar 

  27. Loh, O., Wei, X., Ke, C., Sullivan, J. & Espinosa, H. Robust carbon nanotube-based nanoelectromechanical devices: Understanding and eliminating prevalent failure modes using alternative electrode materials. Small 7, 79–86 (2011).

    CAS  Google Scholar 

  28. Han, J-W. et al. Nanowire mechanical switch with a built-in diode. Small 6, 1197–1200 (2010).

    CAS  Google Scholar 

  29. Jang, J. et al. Nanoscale memory cell based on a nanoelectromechanical switched capacitor. Nature Nanotech. 3, 26–30 (2008). This paper reports NEM switched capacitors, including demonstrations of data being written to the NEM structures.

    CAS  Google Scholar 

  30. Lee, S. et al. A three-terminal carbon nanorelay. Nano Lett. 4, 2027–2030 (2004).

    CAS  Google Scholar 

  31. Chen, C. et al. in Proc. ACM/SIGDA Int. Symp. on Field Programmable Gate Arrays 273–282 (ACM, 2010).

    Google Scholar 

  32. Ekinci, K. Electromechanical transducers at the nanoscale: Actuation and sensing of motion in nanoelectromechanical systems (NEMS). Small 1, 786–797 (2005). This review focuses on the use of nanoscale electromechanical resonators for actuation and sensing.

    CAS  Google Scholar 

  33. Ekinci, K. & Roukes, M. Nanoelectromechanical systems. Rev. Sci. Instr. 76, 061101 (2005).

    Google Scholar 

  34. Eichler, A. et al. Nonlinear damping in mechanical resonators made from carbon nanotubes and graphene. Nature Nanotech. 6, 339–342 (2011).

    CAS  Google Scholar 

  35. Ollier, E. et al. in Proc. IEEE Int. Conf. on Electron. Dev. Solid-State Circuits 1–6 (IEEE, 2008).

    Google Scholar 

  36. Ilic, B. et al. Attogram detection using nanoelectromechanical oscillators. J. Appl. Mech. 95, 3694–3703 (2004).

    CAS  Google Scholar 

  37. Ekinci, K., Huang, X. & Roukes, M. Ultrasensitive nanoelectromechanical mass detection. Appl. Phys. Lett. 84, 4469–4471 (2004).

    CAS  Google Scholar 

  38. Feng, X. L., He, R., Yang, P. & Roukes, M. L. Very high frequency silicon nanowire electromechanical resonators. Nano Lett. 7, 1953–1959 (2007).

    CAS  Google Scholar 

  39. Feng, X. L., White, C. J., Hajimiri, A. & Roukes, M. L. A self-sustaining Ultra-high frequency nanoelectromechanical oscillator. Nature Nanotech. 3, 342–346 (2008).

    CAS  Google Scholar 

  40. Madou, M. Fundamentals of Microfabrication 2nd edn (CRC, 2002).

    Google Scholar 

  41. Dadgour, H., Cassell, A. M. & Banerjee, K. in IEEE Int. Electron Devices Meeting 2008; http://dx.doi.org/10.1109/IEDM.2008.4796742

    Google Scholar 

  42. Axelsson, S. et al. Theoretical and experimental investigations of three-terminal carbon nanotube relays. New J. Phys. 7, 245 (2005).

    Google Scholar 

  43. Hayamizu, Y. et al. Integrated three-dimensional microelectromechanical devices from processable carbon nanotube wafers. Nature Nanotech. 3, 289–294 (2008).

    CAS  Google Scholar 

  44. Chong, S. et al. in Proc. 2009 Int. Conf. on Computer-Aided Design 478–484 (IEEE, 2009).

    Google Scholar 

  45. Cha, S. et al. Fabrication of a nanoelectromechanical switch using a suspended carbon nanotube. Appl. Phys. Lett. 86, 083105 (2005).

    Google Scholar 

  46. Dujardin, E., Derycke, V., Goffman, M., Lefevre, R. & Bourgoin, J. Self-assembled switches based on electroactuated multiwalled nanotubes. Appl. Phys. Lett. 87, 193107 (2005).

    Google Scholar 

  47. Ke, C. H. & Espinosa, H. D. In-situ electron microscopy electro-mechanical characterization of a NEMS bistable device. Small 2, 1484–1489 (2006).

    CAS  Google Scholar 

  48. Jang, W. et al. Fabrication and characterization of a nanoelectromechanical switch with 15-nm-thick suspension air gap. Appl. Phys. Lett. 92, 103110 (2008).

    Google Scholar 

  49. Ke, C. H. & Espinosa, H. D. Feedback controlled nanocantilever device. Appl. Phys. Lett. 85, 681–683 (2004).

    CAS  Google Scholar 

  50. Ke, C. H. & Espinosa, H. D. in Proc. 2004 ASME Int. Mech. Eng. Congress 539–542 (ASME, 2004).

    Google Scholar 

  51. Ke, C. H., Espinosa, H. D. & Pugno, N. Numerical analysis of nanotube based NEMS devices — Part II: Role of finite kinematics, stretching and charge concentrations. J. Appl. Mech. 72, 726–731 (2005).

    Google Scholar 

  52. Ward, J. W. et al. in Non-Volatile Memory Technology Symp. 34–38 (IEEE, 2004).

    Google Scholar 

  53. Loh, O., Wei, X., Sullivan, J., Ocola, L., Divan, R. & Espinosa, H. D. Carbon–carbon contacts for robust nanoelectromechanical switches. Adv. Mater. http://dx.doi.org/10.1002/adma.201104889 (2012).

  54. Sazonova, V. et al. A tunable carbon nanotube electromechanical oscillator. Nature 431, 284–287 (2004).

    CAS  Google Scholar 

  55. Peng, B. et al. Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements. Nature Nanotech. 3, 626–631 (2008).

    CAS  Google Scholar 

  56. Franklin, A. D. & Chen, Z. Length scaling of carbon nanotube transistors. Nature Nanotech. 5, 858–862 (2010).

    CAS  Google Scholar 

  57. Arnold, M. S., Green, A., Hulvat, J., Stupp, S. I. & Hersam, M. C. Sorting carbon nanotubes by electronic structure using density differentiation. Nature Nanotech. 1, 60–65 (2006).

    CAS  Google Scholar 

  58. Kinaret, J. M., Nord, T. & Viefers, S. A carbon-nanotube-based nanorelay. Appl. Phys. Lett. 82, 1287–1289 (2003).

    CAS  Google Scholar 

  59. Kaul, A., Wong, E., Epp, L. & Hunt, B. Electromechanical carbon nanotube switches for high-frequency applications. Nano Lett. 6, 942–947 (2006).

    CAS  Google Scholar 

  60. Ross, P. Nanotechnology — Still waiting for nanotube memory chip IEEE Spectrum 45, 61–62 (January 2008).

    Google Scholar 

  61. Subramanian, A., Dong, L., Nelson, B. & Ferreira, A. Supermolecular switches batch-fabricated from multiwalled nanotubes. Appl. Phys. Lett. 96, 073116 (2010).

    Google Scholar 

  62. Davidson, B. D., Seghete, D., George, S. M. & Bright, V. M. ALD tungsten NEMS switches and tunneling devices. Sens. Actuat. A 166, 269–276 (2011).

    CAS  Google Scholar 

  63. Feng, X. L., Matheny, M. H., Zorman, C. A., Mehregany, M. & Roukes, M. L. Low voltage nanoelectromechanical switches based on silicon carbide nanowires. Nano Lett. 10, 2891–2896 (2010).

    CAS  Google Scholar 

  64. Bunch, J. et al. Electromechanical resonators from graphene sheets. Science 315, 490–493 (2007).

    CAS  Google Scholar 

  65. Schwierz, F. Graphene transistors. Nature Nanotech. 5, 487–496 (2010).

    CAS  Google Scholar 

  66. Cui, Y. & Lieber, C. M. Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 291, 851–853 (2001).

    CAS  Google Scholar 

  67. Huang, Y. et al. Logic gates and computation from assembled nanowire building blocks. Science 294, 1313–1317 (2001).

    CAS  Google Scholar 

  68. Cheung, C., Kurtz, A., Park, H. K. & Lieber, C. Diameter-controlled synthesis of carbon nanotubes. J. Phys. Chem. B 106, 2429–2433 (2002).

    CAS  Google Scholar 

  69. Javey, A. & Dai, H. Regular arrays of 2 nm metal nanoparticles for deterministic synthesis of nanomaterials. J. Am. Chem. Soc. 127, 11942–11943 (2005).

    CAS  Google Scholar 

  70. Durrer, L. et al. SWNT growth by CVD on ferritin-based iron catalyst nanoparticles towards CNT sensors. Sens. Actuat. B 132, 485–490 (2008).

    CAS  Google Scholar 

  71. Huang, L. et al. Cobalt ultrathin film catalyzed ethanol chemical vapor deposition of single-walled carbon nanotubes. J. Phys. Chem. B 110, 11103–11109 (2006).

    CAS  Google Scholar 

  72. Ilani, S., Donev, L., Kindermann, M. & McEuen, P. Measurement of the quantum capacitance of interacting electrons in carbon nanotubes. Nature Phys. 2, 687–691 (2006).

    CAS  Google Scholar 

  73. Ke, C. H. & Espinosa, H. D. Numerical analysis of nanotube based NEMS devices. Part I: Electrostatic charge distribution on multiwalled nanotubes. J. Appl. Mech. 72, 721–725 (2005).

    Google Scholar 

  74. Kang, S. et al. High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. Nature Nanotech. 2, 230–236 (2007).

    CAS  Google Scholar 

  75. Liu, X., Ryu, K., Badmaev, A., Han, S. & Zhou, C. Diameter dependence of aligned growth of carbon nanotubes on a-plane sapphire substrates. J. Phys. Chem. C 112, 15929–15933 (2008).

    CAS  Google Scholar 

  76. Bae, S-S. et al. Roll-to-rollproduction of 30-inch graphene films for transport electrodes. Nature Nanotech. 5, 574–578 (2010).

    CAS  Google Scholar 

  77. Cassell, A. et al. Directed growth of free-standing single-walled carbon nanotubes. J. Am. Chem. Soc. 121, 7975–7976 (1999).

    CAS  Google Scholar 

  78. Abrams, Z., Ioffe, Z., Tsukernik, A., Cheshnovsky, O. & Hanein, Y. A complete scheme for creating predefined networks of individual carbon nanotubes. Nano Lett. 7, 2666–2671 (2007).

    CAS  Google Scholar 

  79. Kuljanishvili, I., Dikin, D. A., Rozhok, S., Mayle, S. & Chandrasekhar, V. Controllable patterning and CVD growth of isolated carbon nanotubes with direct parallel writing of catalyst using dip-pen nanolithography. Small 5, 2523–2527 (2009).

    CAS  Google Scholar 

  80. Kraus, T. et al. Nanoparticle printing with single-particle resolution. Nature Nanotech. 2, 570–576 (2007).

    CAS  Google Scholar 

  81. Salaita, K., Wang, Y. & Mirkin, C. Applications of dip-pen nanolithography. Nature Nanotech. 2, 145–155 (2007).

    CAS  Google Scholar 

  82. Huo, F. et al. Polymer pen lithography. Science 321, 1658–1660 (2008).

    CAS  Google Scholar 

  83. Shim, W. et al. Hard-tip, soft-spring lithography. Nature 469, 516–520 (2011).

    CAS  Google Scholar 

  84. Kim, K. H., Moldovan, N. & Espinosa, H. D. A nanofountain probe with sub-100 nm molecular writing resolution. Small 1, 632–635 (2005).

    CAS  Google Scholar 

  85. Moldovan, N., Kim, K. H. & Espinosa, H. D. Design and fabrication of a novel microfluidic nanoprobe. J. MEMS 15, 204–213 (2006).

    Google Scholar 

  86. Moldovan, N., Kim, K-H. & Espinosa, H. D. A multi-ink linear array of nanofountain probes. J. Micromech. Microeng. 16, 1935–1942 (2006).

    Google Scholar 

  87. Espinosa, H. D. & Loh, O. Annual Technical Report (NSF Nanoscale Science and Engineering Center for Integrated Nanopatterning and Detection Technologies, Northwestern Univ., 2009); http://www.nu-nsec.org/2009%20NSEC%20Annual%20Report.pdf

  88. Mendes, P. et al. Gold nanoparticle patterning of silicon wafers using chemical e-beam lithography. Langmuir 20, 3766–3768 (2004).

    CAS  Google Scholar 

  89. Wang, Y. et al. Controlling the shape, orientation, and linkage of carbon nanotube features with nano affinity templates. Proc. Natl Acad Sci. USA 103, 2026–2031 (2006).

    CAS  Google Scholar 

  90. Rao, S., Huang, L., Setyawan, W. & Hong, S. Large-scale assembly of carbon nanotubes. Nature 425, 36–37 (2003).

    CAS  Google Scholar 

  91. Bae, S. et al. Selectively assembled Co nanoparticle stripes prepared by covalent linkage and microcontact printing. J. Phys. Chem. B 108, 2575–2579 (2004).

    CAS  Google Scholar 

  92. Zin, M., Ma, H., Sarikaya, M. & Jen, A. Assembly of gold nanoparticles using genetically engineered polypeptides. Small 1, 698–702 (2005).

    CAS  Google Scholar 

  93. Subramanian, A. et al. Batch fabrication of carbon nanotube bearings. Nanotechnology 18, 075703 (2007).

    CAS  Google Scholar 

  94. Subramanian, A., Nelson, B., Dong, L. & Bell, D. in 6th IEEE Int. Symp. on Assembly and Task Planning 200–205 (IEEE, 2005).

    Google Scholar 

  95. Li, M. et al. Bottom-up assembly of large-area nanowire resonator arrays. Nature Nanotech. 3, 88–92 (2008).

    CAS  Google Scholar 

  96. Li, J., Zhang, Q., Peng, N. & Zhu, Q. Manipulation of carbon nanotubes using AC dielectrophoresis. Appl. Phys. Lett. 86, 153116 (2005).

    Google Scholar 

  97. Krupke, R., Hennrich, F., Lohneysen, H. & Kappes, M. Separation of metallic from semiconducting single-walled carbon nanotubes. Science 301, 344–347 (2003).

    CAS  Google Scholar 

  98. Lee, S., Lee, D., Yu, H., Campbell, E. & Park, Y. Production of individual suspended single-walled carbon nanotubes using the a.c. electrophoresis technique. Appl. Phys. A 78, 283–286 (2004).

    CAS  Google Scholar 

  99. Schwamb, T. et al. A dielectriphoretic method for high yield deposition of suspended, individual carbon nanotubes with four-point electrode contact. Nano Lett. 7, 3633–3638 (2007).

    CAS  Google Scholar 

  100. Banerjee, S. et al. Precise positioning of single-walled carbon nanotubes by a.c. dielectrophoresis. J. Vac. Sci. Technol. B 24, 3173–3178 (2006).

    CAS  Google Scholar 

  101. McAlpine, M. C., Ahmad, H., Wang, D. & Heath, J. R. Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors. Nature Mater. 6, 379–384 (2007).

    CAS  Google Scholar 

  102. Green, J. E. et al. A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimetre. Nature 445, 414–417 (2007).

    CAS  Google Scholar 

  103. Unarunotai, S. et al. Layer-by-layer transfer of multiple, large area sheets of graphene grown in multilayer stacks on a single SiC wafer. ACS Nano 4, 5591–5598 (2010).

    CAS  Google Scholar 

  104. Sun, D-m. et al. Flexible high-performance carbon nanotube integrated circuits. Nature Nanotech. 6, 156–161 (2011).

    CAS  Google Scholar 

  105. http://www.prnewswire.com/news-releases/lockheed-martin-tests-carbon-nanotube-based-memory-devices-on-nasa-shuttle-mission-70376567.html (2009).

  106. Hopcroft, M., Nix, W. & Kenny, T. What is the Young's modulus of silicon? J. MEMS 19, 229–238 (2010).

    CAS  Google Scholar 

  107. Shacklelford, J. F. & Alexander, W. (eds) CRC Materials Science and Engineering Handbook 3rd edn (CRC, 2001).

    Google Scholar 

  108. Deshpande, V. V. et al. Carbon nanotube linear bearing nanoswitches. Nano Lett. 6, 1092–1095 (2006).

    CAS  Google Scholar 

  109. Lee, J-O. et al. in IEEE Int. Electron Devices Meeting 2009; http://dx.doi.org/10.1109/IEDM.2009.5424380

  110. Soogine, C. et al. in IEEE/ACM Int. Conf. on Computer-Aided Design 478–484 (IEEE, 2009).

    Google Scholar 

  111. Han, J-W., Ahn, J-H., Kim, M-W., Yoon, J-B. & Choi, Y-K. in IEEE Int. Electron Devices Meeting 2009; http://dx.doi.org/10.1109/IEDM.2009.5424264

  112. Lin, W. & Zhao, Y-P. Casimir effect on the pull-in parameters of nanometer switches. Microsys. Technol. 11, 80–85 (2005).

    Google Scholar 

  113. Decca, R. et al. Improved tests of extra-dimensional physics and thermal quantum field theory from new Casimir force measurements. Phys. Rev. D 68, 116003 (2003).

    Google Scholar 

  114. International Roadmap Committee. The International Technology Roadmap for Semiconductors (2005); http://www.itrs.net/Links/2005itrs/home2005.htm

  115. Zande, A. M. v. d. et al. Large-scale arrays of single-layer graphene resonators. Nano Lett. 10, 4869–4873 (2010).

    Google Scholar 

  116. Chilstedt, S., Dong, C. & Chen, D. Design and evaluation of a carbon nanotube based programmable architecture. Int. J. Parallel Prog. 37, 389–416 (2009).

    Google Scholar 

  117. Dadgour, H. F., Hussain, M. M., Cassell, A., Singh, N & Banerjee, K. in IEEE Int. Reliability Physics Symp. (IRPS) 3D.3.1–3D.3.10 (2011).

    Google Scholar 

Download references

Acknowledgements

H.D.E acknowledges support from the National Science Foundation (CMMI-0555734 and DMR-0907196), the Army Research Office (W911NF-08-1-0061), and the Office of Naval Research (N00014-08-1-0792). The authors thank Xiaoding Wei and Michael Roenbeck for constructive advice and input. O.L. acknowledges the Northwestern University Presidential and Ryan Fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Horacio D. Espinosa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loh, O., Espinosa, H. Nanoelectromechanical contact switches. Nature Nanotech 7, 283–295 (2012). https://doi.org/10.1038/nnano.2012.40

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2012.40

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing