Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

When thermoelectrics reached the nanoscale

Subjects

The theoretical work done by Lyndon Hicks and Mildred Dresselhaus 20 years ago on the effect of reduced dimensionality on thermoelectric efficiency has had deep implications beyond the initial expectations.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Evolution of the maximum ZT over time.
Figure 2: Automotive Climate Control Seat by Gentherm.

References

  1. Hicks, L. D. & Dresselhaus, M. S. Phys. Rev. B 47, 12727–12731 (1993).

    Article  CAS  Google Scholar 

  2. Hicks, L. D. & Dresselhaus, M. Phys. Rev. B 47, 16631–16634 (1993).

    Article  CAS  Google Scholar 

  3. Vining, C. B. Nature Mater. 8, 83–85 (2009).

    Article  CAS  Google Scholar 

  4. Ioffe, A. F. Semiconductor Thermoelements, and Thermoelectric Cooling (Infosearch, 1957).

    Google Scholar 

  5. Goldsmid, H. J. & Douglas, R. W. J. Appl. Phys. 5, 386–390 (1954).

    Google Scholar 

  6. Heremans, J. P., Wiendlocha, B. & Chamoire, A. M. Energy Environ. Sci. 5, 5510–5530 (2012).

    Article  CAS  Google Scholar 

  7. Lin, Y-M., Sun, X. & Dresselhaus, M. S. Phys. Rev. B 62, 4610–4623 (2000).

    Article  CAS  Google Scholar 

  8. Heremans, J. P., Thrush, C. M., Morelli, D. T. & Wu, M-C. Phys. Rev. Lett. 88, 216801 (2002).

    Article  Google Scholar 

  9. Mahan, G. D. & Sofo, J. O. Proc. Natl Acad. Sci. USA 93, 7436–7439 (1996).

    Article  CAS  Google Scholar 

  10. Mahan, G. D. in Solid State Physics Vol. 51 (eds Ehrenreich, H. & Spaepen, F.) 82–155 (Academic, 1997).

    Google Scholar 

  11. Bentien, A., Johnsen, S., Madsen, G. K. H., Iversen, B. B. & Steglich, F. Europhys. Lett. 80, 17008 (2007).

    Article  Google Scholar 

  12. Heremans, J. P. et al. Science 321, 554–558 (2008).

    Article  CAS  Google Scholar 

  13. Korringa, I. & Gerritsen, A. N. Physica 19, 457–504 (1953).

    Article  CAS  Google Scholar 

  14. Ravich, Y. I. in CRC Handbook of Thermoelectrics (ed. Rowe, D. M.) 67–73 (CRC, 1995).

    Google Scholar 

  15. Kapitza, P. L. J. Phys. (Moscow) 4, 181–210 (1941).

    Google Scholar 

  16. Rowe, D. M. J. Phys. D 7, 1843–1846 (1974).

    Article  CAS  Google Scholar 

  17. Slack, G. A. & Hussain, M. A. J. Appl. Phys. 70, 2694–2718 (1991).

    Article  CAS  Google Scholar 

  18. Vandersande, J. W., Fleurial, J-P., Scoville, N. & Rolfe, J. L. in Proceedings of the 12th International Conference on Thermoelectrics (ed. Matsuura, K.) 11–14 (Institute of Thermoelectric Technologies Japan, 1993).

    Google Scholar 

  19. Fleurial, J-P. in Proceedings of the 12th International Conference on Thermoelectrics (ed. Matsuura, K.) 1–6 (Institute of Thermoelectric Technologies Japan, 1993).

    Google Scholar 

  20. Venkatasubramanian, R., Siivola, E., Colpitts, T. & O'Quinn, B. Nature 413, 597–602 (2001).

    Article  CAS  Google Scholar 

  21. Harman, T. C., Taylor, P. J., Walsh, M. P. & LaForge, B. E. Science 297, 2229–2232 (2002).

    Article  CAS  Google Scholar 

  22. Kim, P., Shi, L., Majumdar, A. & McEuen, P. L. Phys. Rev. Lett. 87, 215502 (2001).

    Article  CAS  Google Scholar 

  23. Cahill, D. G. et al. J. Appl. Phys. 93, 793–818 (2003).

    Article  CAS  Google Scholar 

  24. Hochbaum, A. et al. Nature 451, 163–167 (2008).

    Article  CAS  Google Scholar 

  25. Hsu, K. et al. Science 303, 818–821 (2004).

    Article  CAS  Google Scholar 

  26. Heremans, J. P., Thrush, C. M. & Morelli, D. T. J. Appl. Phys. 98, 063703 (2005).

    Article  Google Scholar 

  27. Poudeu, P. F. P. et al. J. Am. Chem. Soc. 128, 14347–14355 (2006).

    Article  CAS  Google Scholar 

  28. Li, H., Tang, X., Zhang, Q. & Uher, C. Appl. Phys. Lett. 94, 102114 (2009).

    Article  Google Scholar 

  29. Zhou, C. et al. J. Appl. Phys. 109, 063722 (2011).

    Article  Google Scholar 

  30. Poudel, B. et al. Science 320, 634–638 (2008).

    Article  CAS  Google Scholar 

  31. Joshi, G. et al. Nano Lett. 8, 4670–4674 (2008).

    Article  CAS  Google Scholar 

  32. Biswas, K. et al. Nature 489, 414–418 (2012).

    Article  CAS  Google Scholar 

  33. Slack, G. A. in CRC Handbook of Thermoelectrics (ed. Rowe, D. M.) 407–440 (CRC, 1995).

    Google Scholar 

  34. Skoug, E. J. & Morelli, D. T. Phys. Rev. Lett. 107, 235901 (2011).

    Article  Google Scholar 

  35. Nielsen, M. D., Ozolins, V. & Heremans, J. P. Energy Environ. Sci. 6, 570–578 (2013).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Joseph P. Heremans, Mildred S. Dresselhaus, Lon E. Bell or Donald T. Morelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heremans, J., Dresselhaus, M., Bell, L. et al. When thermoelectrics reached the nanoscale. Nature Nanotech 8, 471–473 (2013). https://doi.org/10.1038/nnano.2013.129

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2013.129

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing