Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Orientation of luminescent excitons in layered nanomaterials

Abstract

In nanomaterials, optical anisotropies reveal a fundamental relationship between structural and optical properties1,2,3,4,5,6. Directional optical properties can be exploited to enhance the performance of optoelectronic devices7,8,9, optomechanical actuators10 and metamaterials11. In layered materials, optical anisotropies may result from in-plane and out-of-plane dipoles associated with intra- and interlayer excitations, respectively. Here, we resolve the orientation of luminescent excitons and isolate photoluminescence signatures arising from distinct intra- and interlayer optical transitions. Combining analytical calculations with energy- and momentum-resolved spectroscopy, we distinguish between in-plane and out-of-plane oriented excitons in materials with weak or strong interlayer coupling—MoS2 and 3,4,9,10-perylene tetracarboxylic dianhydride (PTCDA), respectively. We demonstrate that photoluminescence from MoS2 mono-, bi- and trilayers originates solely from in-plane excitons, whereas PTCDA supports distinct in-plane and out-of-plane exciton species with different spectra, dipole strengths and temporal dynamics. The insights provided by this work are important for understanding fundamental excitonic properties in nanomaterials and designing optical systems that efficiently excite and collect light from exciton species with different orientations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Theory of IP and OP dipole emission.
Figure 2: Exciton orientation in mono-, bi- and trilayer MoS2.
Figure 3: Morphology and exciton orientations in a PTCDA thin film.
Figure 4: Fit-independent method for isolating different exciton orientations.
Figure 5: Comparison of charge-transfer exciton and excimer dynamics.

Similar content being viewed by others

References

  1. DeLongchamp, D. M. et al. High carrier mobility polythiophene thin films: structure determination by experiment and theory. Adv. Mater. 19, 833–837 (2007).

    Article  CAS  Google Scholar 

  2. Kim, D. W., Kim, Y. H., Jeong, H. S. & Jung, H-T. Direct visualization of large-area graphene domains and boundaries by optical birefringency. Nature Nanotech. 7, 29–34 (2011).

    Article  Google Scholar 

  3. Greenaway, D. L., Harbeke, G., Bassani, F. & Tosatti, E. Anisotropy of the optical constants and the band structure of graphite. Phys. Rev. 178, 1340–1348 (1969).

    Article  CAS  Google Scholar 

  4. Liang, W. Optical anisotropy in layer compounds. J. Phys. C 6, 551–565 (1973).

    Article  CAS  Google Scholar 

  5. Alonso, M. I., Garriga, M., Karl, N., Ossó, J. O. & Schreiber, F. Anisotropic optical properties of single crystalline PTCDA studied by spectroscopic ellipsometry. Org. Electron. 3, 23–31 (2002).

    Article  CAS  Google Scholar 

  6. Najafov, H., Lee, B., Zhou, Q., Feldman, L. C. & Podzorov, V. Observation of long-range exciton diffusion in highly ordered organic semiconductors. Nature Mater. 9, 938–943 (2010).

    Article  CAS  Google Scholar 

  7. Wasey, J. A. & Barnes, W. Birefringence and light emission from the polymer LED. Synthetic Met. 111, 213–215 (2000).

    Article  Google Scholar 

  8. Böhmler, B. et al. A. Enhancing and redirecting carbon nanotube photoluminescence by an optical antenna. Opt. Express 18, 16443–16451 (2010).

    Article  Google Scholar 

  9. Chuang, S-Y., Yu, C-C., Chen, H-L., Su, W-F. & Chen, C-W. Exploiting optical anisotropy to increase the external quantum efficiency of flexible P3HT:PCBM blend solar cells at large incident angles. Sol. Energ. Mat. Sol. C 95, 1–10 (2011).

    Article  Google Scholar 

  10. Neale, S. L., MacDonald, M. P., Dholakia, K. & Krauss, T. F. All-optical control of microfluidic components using form birefringence. Nature Mater. 4, 530–533 (2005).

    Article  CAS  Google Scholar 

  11. Hoffman, A. J. et al. Negative refraction in semiconductor metamaterials. Nature Mater. 6, 946–950 (2007).

    Article  CAS  Google Scholar 

  12. Lieb, M. A., Zavislan, J. M. & Novotny, L. Single-molecule orientations determined by direct emission pattern imaging. J. Opt. Soc. Am. B 21, 1210–1215 (2004).

    Article  CAS  Google Scholar 

  13. Lieberherr, M., Fattinger, Ch. & Lukosz, W. Optical-environment-dependent effects on the fluorescence of submonomolecular dye layers on interfaces. Surf. Sci. 189–190, 954–959 (1987).

    Article  Google Scholar 

  14. Curto, A. G. et al. Unidirectional emission of a quantum dot coupled to a nanoantenna. Science 329, 930–933 (2010).

    Article  CAS  Google Scholar 

  15. Taminiau, T. H., Karaveli, S., van Hulst, N. F. & Zia, R. Quantifying the magnetic nature of light emission. Nature Commun. 3, 979 (2012).

    Article  Google Scholar 

  16. Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    Article  Google Scholar 

  17. Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2 . Nano Lett. 10, 1271–1275 (2010).

    Article  CAS  Google Scholar 

  18. Reshak, A. & Auluck, S. Calculated optical properties of 2H-MoS2 intercalated with lithium. Phys. Rev. B 68, 1–7 (2003).

    Google Scholar 

  19. Pope, M. & Swenberg, C. E. Electronic Processes in Organic Crystals and Polymers (Oxford Univ. Press, 1999).

    Google Scholar 

  20. Forrest, S. R. Ultrathin organic films grown by organic molecular beam deposition and related techniques. Chem. Rev. 97, 1793–1896 (1997).

    Article  CAS  Google Scholar 

  21. Proehl, H., Dienel, T., Nitsche, R. & Fritz, T. Formation of solid-state excitons in ultrathin crystalline films of PTCDA: from single molecules to molecular stacks. Phys. Rev. Lett. 93, 097403 (2004).

    Article  Google Scholar 

  22. Hennessy, M. H., Soos, Z. G., Pascal, R. A. & Girlando, A. Vibronic structure of PTCDA stacks: the exciton–phonon-charge-transfer dimer. Chem. Phys. 245, 199–212 (1999).

    Article  CAS  Google Scholar 

  23. Hoffmann, M. et al. The lowest energy Frenkel and charge-transfer excitons in quasi-one-dimensional structures: application to MePTCDI and PTCDA crystals. Chem. Phys. 258, 73–96 (2000).

    Article  CAS  Google Scholar 

  24. Knupfer, M., Schwieger, T., Fink, J., Leo, K. & Hoffmann, M. Excitons in quasi-one-dimensional organic crystals. Phys. Rev. B 66, 035208 (2002).

    Article  Google Scholar 

  25. Engel, E., Koschorreck, M., Leo, K. & Hoffmann, M. Ultrafast relaxation in quasi-one-dimensional organic molecular crystals. Phys. Rev. Lett. 95, 157403 (2005).

    Article  CAS  Google Scholar 

  26. Scholz, R., Kobitski, A. Y., Zahn, D. R. T. & Schreiber, M. Investigation of molecular dimers in α-PTCDA by ab initio methods: binding energies, gas-to-crystal shift, and self-trapped excitons. Phys. Rev. B 72, 245208 (2005).

    Article  Google Scholar 

  27. Kobitski, A. Y., Scholz, R., Zahn, D. R. & Wagner, H. P. Time-resolved photoluminescence study of excitons in α-PTCDA as a function of temperature. Phys. Rev. B 68, 155201 (2003).

    Article  Google Scholar 

  28. Wagner, H. P., DeSilva, A. & Kampen, T. Exciton emission in PTCDA films and PTCDA/Alq3 multilayers. Phys. Rev. B 70, 235201 (2004).

    Article  Google Scholar 

  29. Gangilenka, V. R. et al. Exciton emission in PTCDA thin films under uniaxial pressure. Phys. Rev. B 77, 115206 (2008).

    Article  Google Scholar 

  30. Tada, A., Geng, Y., Wei, Q., Hashimoto, K. & Tajima, K. Tailoring organic heterojunction interfaces in bilayer polymer photovoltaic devices. Nature Mater. 10, 450–455 (2011).

    Article  CAS  Google Scholar 

  31. Campoy-Quiles, M., Etchegoin, P. G. & Bradley, D. D. C. On the optical anisotropy of conjugated polymer thin films. Phys. Rev. B 72, 045209 (2005).

    Article  Google Scholar 

  32. Gurau, M. C. et al. Measuring molecular order in poly(3-alkylthiophene) thin films with polarizing spectroscopies. Langmuir 23, 834–842 (2007).

    Article  CAS  Google Scholar 

  33. Dressel, M. et al. Kramers–Kronig-consistent optical functions of anisotropic crystals: generalized spectroscopic ellipsometry on pentacene. Opt. Express 16, 19770–19778 (2008).

    Article  CAS  Google Scholar 

  34. Gordan, O. D., Friedrich, M. & Zahn, D. R. T. The anisotropic dielectric function for copper phthalocyanine thin films. Org. Electron. 5, 291–297 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank S. Cueff, C. Dodson, T.F. Heinz, M. Jiang, J.A. Kash, J.A. Kurvits, D. Li, K.F. Mak, T.H. Taminiau and J.T. Yardley for helpful discussions. Support for R.Z. and S.K., travel for J.A.S., and the optical experiments were provided by the Air Force Office of Scientific Research (PECASE award no. FA-9550-10-1-0026), the National Science Foundation (CAREER award no. EECS-0846466, MRSEC award no. DMR-0520651) and the Nanoelectronic Research Initiative of the Semiconductor Research Corporation. J.A.S., T.S., S.Y. and I.K. were supported as part of the Center for Re-Defining Photovoltaic Efficiency through Molecule Scale Control, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences (award no. DE-SC0001085). K.H. and J.S. were supported by the National Science Foundation (DMR-0907477). GIXD measurements were carried out at beamline 11-3 at the Stanford Synchrotron Radiation Light Source, SLAC National Accelerator Laboratory, a national user facility operated by Stanford University on behalf of the US Department of Energy, Office of Basic Energy Sciences. NEXAFS measurements were carried out at beamline U7A at the National Synchrotron Light Source, Brookhaven National Laboratory, which is supported by the US Department of Energy, Office of Basic Energy Sciences (contract no. DE-AC02-98CH10886).

Author information

Authors and Affiliations

Authors

Contributions

J.A.S., S.K. and R.Z. designed and performed the optical experiments. T.S. performed and analysed GIXD and NEXAFS measurements. K.H. and J.S. fabricated the MoS2 samples. S.Y. and I.K. fabricated the PTCDA samples. J.A.S., S.K. and R.Z. analysed the data and implemented the theoretical model. All authors provided detailed feedback on the results and helped write the manuscript.

Corresponding authors

Correspondence to Jon A. Schuller or Rashid Zia.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 732 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schuller, J., Karaveli, S., Schiros, T. et al. Orientation of luminescent excitons in layered nanomaterials. Nature Nanotech 8, 271–276 (2013). https://doi.org/10.1038/nnano.2013.20

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2013.20

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing