Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Thermal fluctuations in artificial spin ice

Abstract

Artificial spin ice systems have been proposed as a playground for the study of monopole-like magnetic excitations1,2, similar to those observed in pyrochlore spin ice materials3. Currents of magnetic monopole excitations have been observed4, demonstrating the possibility for the realization of magnetic-charge-based circuitry. Artificial spin ice systems that support thermal fluctuations can serve as an ideal setting for observing dynamical effects such as monopole propagation and as a potential medium for magnetricity investigations1,2. Here, we report on the transition from a frozen to a dynamic state in artificial spin ice with a square lattice. Magnetic imaging is used to determine the magnetic state of the islands in thermal equilibrium. The temperature-induced onset of magnetic fluctuations and excitation populations are shown to depend on the lattice spacing and related interaction strength between islands. The excitations are described by Boltzmann distributions with their factors in the frozen state relating to the blocking temperatures of the array. Our results provide insight into the design of thermal artificial spin ice arrays where the magnetic charge density and response to external fields can be studied in thermal equilibrium.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Geometry and magnetic imaging.
Figure 2: Determination of vertex states from magnetic imaging.
Figure 3: Effect of inter-island interactions on the onset of vertex state fluctuations.
Figure 4: Temperature dependence of magnetic fluctuations.
Figure 5: Thermal distributions, fluctuations and energy statistics of vertex states.

Similar content being viewed by others

References

  1. Nisoli, C., Moessner, R. & Schiffer, P. Colloquium. Artificial spin ice: designing and imaging magnetic frustration. Rev. Mod. Phys. 85, 1473–1490 (2013).

    Article  CAS  Google Scholar 

  2. Heyderman, L. J. & Stamps, R. L. Artificial ferroic systems: novel functionality from structure, interactions and dynamics. J. Phys. 25, 363201 (2013).

    CAS  Google Scholar 

  3. Castelnovo, C., Moessner, R. & Sondhi, S. L. Magnetic monopoles in spin ice. Nature 451, 42–45 (2008).

    Article  CAS  Google Scholar 

  4. Giblin, S. R., Bramwell, S. T., Holdsworth, P. C. W., Prabhakaran, D. & Terry, I. Creation and measurement of long-lived magnetic monopole currents in spin ice. Nature Phys. 7, 252–258 (2011).

    Article  CAS  Google Scholar 

  5. Pauling, L. The structure and entropy of ice and of other crystals with some randomness of atomic arrangement. J. Am. Chem. Soc. 57, 2680–2684 (1935).

    Article  CAS  Google Scholar 

  6. Giauque, W. & Stout, J. The entropy of water and the third law of thermodynamics. The heat capacity of ice from 15 to 273 °K. J. Am. Chem. Soc. 58, 1144–1150 (1936).

    Article  CAS  Google Scholar 

  7. Harris, M. J., Bramwell, S. T., McMorrow, D. F., Zeiske, T. & Godfrey, K. W. Geometrical frustration in the ferromagnetic pyrochlore Ho2Ti2O7 . Phys. Rev. Lett. 79, 2554–2557 (1997).

    Article  CAS  Google Scholar 

  8. Bramwell, S. T. & Gingras, M. J. P. Spin ice state in frustrated magnetic pyrochlore materials. Science 294, 1495–1501 (2001).

    Article  CAS  Google Scholar 

  9. Jaubert, L. D. C. & Holdsworth, P. C. W. Signature of magnetic monopole and Dirac string dynamics in spin ice. Nature Phys. 5, 258–261 (2009).

    Article  CAS  Google Scholar 

  10. Bramwell, S. T. et al. Measurement of the charge and current of magnetic monopoles in spin ice. Nature 461, 956–959 (2009).

    Article  CAS  Google Scholar 

  11. Wang, R. F. et al. Artificial ‘spin ice’ in a geometrically frustrated lattice of nanoscale ferromagnetic islands. Nature 439, 303–306 (2006).

    Article  CAS  Google Scholar 

  12. Morgan, J. P., Stein, A., Langridge, S. & Marrows, C. H. Thermal ground-state ordering and elementary excitations in artificial magnetic square ice. Nature Phys. 7, 75–79 (2011).

    Article  CAS  Google Scholar 

  13. Arnalds, U. B. et al. Thermalized ground state of artificial kagome spin ice building blocks. Appl. Phys. Lett. 101, 112404 (2012).

    Article  Google Scholar 

  14. Farhan, A. et al. Exploring hyper-cubic energy landscapes in thermally active finite artificial spin-ice systems. Nature Phys. 9, 375–382 (2013).

    Article  CAS  Google Scholar 

  15. Farhan, A. et al. Direct observation of thermal relaxation in artificial spin ice. Phys. Rev. Lett. 111, 057204 (2013).

    Article  CAS  Google Scholar 

  16. Mengotti, E. et al. Real-space observation of emergent magnetic monopoles and associated Dirac strings in artificial kagome spin ice. Nature Phys. 7, 68–74 (2011).

    Article  CAS  Google Scholar 

  17. Bramwell, S. T. et al. Measurement of the charge and current of magnetic monopoles in spin ice. Nature 461, 956–959 (2009).

    Article  CAS  Google Scholar 

  18. Ladak, S., Read, D. E., Perkins, G. K., Cohen, L. F. & Branford, W. R. Direct observation of magnetic monopole defects in an artificial spin-ice system. Nature Phys. 6, 359–363 (2010).

    Article  CAS  Google Scholar 

  19. Kapaklis, V. et al. Melting artificial spin ice. New J. Phys. 14, 035009 (2012).

    Article  Google Scholar 

  20. Ke, X., Li, J., Zhang, S., Nisoli, C., Crespi, V. H. & Schiffer, P. Tuning magnetic frustration of nanomagnets in triangular-lattice geometry. Appl. Phys. Lett. 93, 252504 (2008).

    Article  Google Scholar 

  21. Budrikis, Z. et al. Disorder strength and field-driven ground state domain formation in artificial spin ice: experiment, simulation, and theory. Phys. Rev. Lett. 109, 037203 (2012).

    Article  Google Scholar 

  22. Bedanta, S. & Kleemann, W. Supermagnetism. J. Phys. D 42, 013001 (2008).

    Article  Google Scholar 

  23. Wysin, G. M., Moura-Melo, W. A., Mól, L. A. S. & Pereira, A. R. Dynamics and hysteresis in square lattice artificial spin ice. New J. Phys. 15, 045029 (2013).

    Article  Google Scholar 

  24. Zhang, S. Crystallites of magnetic charges in artificial spin ice. Nature 500, 553–557 (2013).

    Article  CAS  Google Scholar 

  25. Libál, A., Reichhardt, C. & Reichhardt, C. Realizing colloidal artificial ice on arrays of optical traps. Phys. Rev. Lett. 97, 228302 (2006).

    Article  Google Scholar 

  26. Wernsdorfer, W. et al. Experimental evidence of the Néel–Brown model of magnetization reversal. Phys. Rev. Lett. 78, 1791–1794 (1997).

    Article  CAS  Google Scholar 

  27. Osborn, J. A. Demagnetizing factors of the general ellipsoid. Phys. Rev. 67, 351–357 (1945).

    Article  Google Scholar 

  28. Porro, J. M., Bedoya-Pinto, A., Berger, A. & Vavassori, P. Exploring thermally induced states in square artificial spin-ice arrays. New J. Phys. 15, 055012 (2013).

    Article  Google Scholar 

  29. Heyderman, L. J. Artificial spin ice: Crystal-clear order. Nature Nanotech. 8, 705–706 (2013).

    Article  CAS  Google Scholar 

  30. Cowburn, R. P. & Welland, M. Room temperature magnetic quantum cellular automata. Science 287, 1466–1468 (2000).

    Article  CAS  Google Scholar 

  31. Imre, A. et al. Majority logic gate for magnetic quantum-dot cellular automata. Science 311, 205–208 (2006).

    Article  CAS  Google Scholar 

  32. Papaioannou, E. Th., Kapaklis, V., Taroni, A., Marcellini, M. & Hjörvarsson, B. Dimensionality and confinement effects in δ-doped Pd(Fe) layers. J. Phys. 22, 236004 (2010).

    Google Scholar 

  33. Scholl, A. et al. Observation of antiferromagnetic domains in epitaxial thin films. Science 287, 1014–1016 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the Knut and Alice Wallenberg Foundation, the Swedish Research Council, the Swedish Foundation for International Cooperation in Research and Higher Education and the Swiss National Science Foundation. The Advanced Light Source (ALS) is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy (contract no. DE-AC02-05CH11231). The authors thank A. Young of the ALS for support during the PEEM experiments and A. Weber for development of the patterning processes and sample manufacture. The authors are also grateful to V. Guzenko for support with electron-beam lithography. V.K. would like to thank P.E. Jönsson for discussions.

Author information

Authors and Affiliations

Authors

Contributions

B.H. and L.J.H. initiated the work. V.K., U.B.A., A.F., R.V.C., A.B. and A.S. performed the PEEM-XMCD imaging. V.K. and U.B.A. analysed the data. V.K., U.B.A. and B.H. wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Vassilios Kapaklis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 571 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kapaklis, V., Arnalds, U., Farhan, A. et al. Thermal fluctuations in artificial spin ice. Nature Nanotech 9, 514–519 (2014). https://doi.org/10.1038/nnano.2014.104

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2014.104

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing