Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Polymer matrix nanocomposites for automotive structural components

Abstract

Over the past several decades, the automotive industry has expended significant effort to develop lightweight parts from new easy-to-process polymeric nanocomposites. These materials have been particularly attractive because they can increase fuel efficiency and reduce greenhouse gas emissions. However, attempts to reinforce soft matrices by nanoscale reinforcing agents at commercially deployable scales have been only sporadically successful to date. This situation is due primarily to the lack of fundamental understanding of how multiscale interfacial interactions and the resultant structures affect the properties of polymer nanocomposites. In this Perspective, we critically evaluate the state of the art in the field and propose a possible path that may help to overcome these barriers. Only once we achieve a deeper understanding of the structure–properties relationship of polymer matrix nanocomposites will we be able to develop novel structural nanocomposites with enhanced mechanical properties for automotive applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Relative performance and cost profiles in nanocomposite manufacturing.
Figure 2: Successful examples of nanocomposites with enhanced mechanical properties.

Similar content being viewed by others

References

  1. Ritchie, R. O. The conflicts between strength and toughness. Nat. Mater. 10, 817–822 (2011).

    Article  CAS  Google Scholar 

  2. Drzal, L. T. & Madhukar, M. Fibre-matrix adhesion and its relationship to composite mechanical properties. J. Mater. Sci. 28, 569–610 (1993).

    Article  CAS  Google Scholar 

  3. Winey, K. I. et al. Polymer nanocomposites. MRS Bull. 32, 314–322 (2007).

    Article  CAS  Google Scholar 

  4. Hsu, L., Weder, C. & Rowan, S. J. Stimuli-responsive, mechanically-adaptive polymer nanocomposites. J. Mater. Chem. 21, 2812–2822 (2011).

    Article  CAS  Google Scholar 

  5. National Research Council Application of Lightweighting Technology to Military Aircraft, Vessels and Vehicles 122 (National Academies Press, 2012).

  6. Vaia, R. A. & Giannelis, E. P. Polymer nanocomposites: status and opportunities. MRS Bull. 26, 394–401 (2001).

    Article  CAS  Google Scholar 

  7. Zhao, Y. et al. Small-molecule-directed nanoparticle assembly towards stimuli-responsive nanocomposites. Nat. Mater. 8, 979–985 (2009).

    Article  CAS  Google Scholar 

  8. Stefik, M. et al. Ordered three- and five-ply nanocomposites from ABC block terpolymer microphase separation with niobia and aluminosilicate sol. Chem. Mater. 21, 5466–5473 (2009).

    Article  CAS  Google Scholar 

  9. Vickery, J. L., Patil, A. J. & Mann, S. Fabrication of graphene–polymer nanocomposites with higher-order three-dimensional architectures. Adv. Mater. 21, 2180–2184 (2009).

    Article  CAS  Google Scholar 

  10. Chatterjee, T., Mitchell, C. A., Hadjiev, V. G. & Krishnamoorti, R. Hierarchical polymer–nanotube composites. Adv. Mater. 19, 3850–3853 (2007).

    Article  CAS  Google Scholar 

  11. Li, L., Li, C. Y. & Ni, C. Polymer crystallization-driven, periodic patterning on carbon nanotubes. J. Am. Chem. Soc. 128, 1692–1699 (2006).

    Article  CAS  Google Scholar 

  12. Lee, J. Y., Thompson, R. B., Jasnow, D. & Balazs, A. C. Entropically driven formation of hierarchically ordered nanocomposites. Phys. Rev. Lett. 89, 155503 (2002).

    Article  Google Scholar 

  13. Adams, M., Dogic, Z., Keller, S. L. & Fraden, S. Entropically driven microphase transitions in mixtures of colloidal rods and spheres. Nature 393, 349–352 (1998).

    Article  CAS  Google Scholar 

  14. Yavari, F., Chen, L., Zandiatashbar, A., Yu, Z. & Koratkar, N. Synergy derived by combining graphene and carbon nanotubes as nanofillers in composites. J. Nanosci. Nanotechnol. 12, 3165–3169 (2012).

    Article  CAS  Google Scholar 

  15. Vaia, R. A. & Maguire, J. F. Polymer nanocomposites with prescribed morphology: going beyond nanoparticle-filled polymers. Chem. Mater. 19, 2736–2751 (2007).

    Article  CAS  Google Scholar 

  16. Luo, J. et al. Compression and aggregation-resistant particles of soft sheets. ACS Nano 5, 8943–8949 (2011).

    Article  CAS  Google Scholar 

  17. Knauert, S. T., Douglas, J. F. & Starr, F. W. The effect of nanoparticle shape on polymer-nanocomposite rheology and tensile strength. J. Polym. Sci. B, Polym. Phys. 45, 1882–1897 (2007).

    Article  CAS  Google Scholar 

  18. Ramanathan, T. et al. Functionalized graphene sheets for polymer nanocomposites. Nat. Nanotech. 3, 327–331 (2008).

    Article  CAS  Google Scholar 

  19. Wan, C. & Chen, B. Reinforcement and interphase of polymer/graphene oxide nanocomposites. J. Mater. Chem. 22, 3637–3646 (2012).

    Article  CAS  Google Scholar 

  20. Schaefer, D. W. & Justice, R. S. How nano are nanocomposites? Macromolecules 40, 8501–8517 (2007).

    Article  CAS  Google Scholar 

  21. Zheng, X., Forest, M. G., Vaia, R., Arlen, M. & Zhou, R. A strategy for dimensional percolation in sheared nanorod dispersions. Adv. Mater. 19, 4038–4043 (2007).

    Article  CAS  Google Scholar 

  22. Yoonessi, M. et al. Graphene polyimide nanocomposites; thermal, mechanical, and high-temperature shape memory effects. ACS Nano 6, 7644–7655 (2012).

    Article  CAS  Google Scholar 

  23. Munch, E. Tough, bio-inspired hybrid materials. Science 322, 1516–1520 (2008).

    Article  CAS  Google Scholar 

  24. Mackay, M. E. et al. General strategies for nanoparticle dispersion. Science 311, 1740–1743 (2006).

    Article  CAS  Google Scholar 

  25. Liu, W., Yang, C.-L., Zhu, Y.-T. & Wang, M.-S. Interactions between single-walled carbon nanotubes and polyethylene/polypropylene/polystyrene/poly(phenylacetylene)/poly(p-phenylenevinylene) considering repeat unit arrangements and conformations: a molecular dynamics simulation study. J. Phys. Chem. C 112, 1803–1811 (2008).

    Article  CAS  Google Scholar 

  26. Chen, J. et al. Noncovalent engineering of carbon nanotube surfaces by rigid, functional conjugated polymers. J. Am. Chem. Soc. 124, 9034–9035 (2002).

    Article  CAS  Google Scholar 

  27. Chen, J. & Rajagopal, R. Nanocomposites and methods thereto. US patent 7,479,516 B2 (2009).

  28. Liff, S. M., Kumar, N. & McKinley, G. H. High-performance elastomeric nanocomposites via solvent-exchange processing. Nat. Mater. 6, 76–83 (2007).

    Article  CAS  Google Scholar 

  29. Okada, A. & Usuki, A. The chemistry of polymer–clay hybrids. Mater. Sci. Eng. C 3, 109–115 (1995).

    Article  Google Scholar 

  30. Lincoln, D. M., Vaia, R. A., Wang, Z.-G. Hsiao, B. S. Secondary structure and elevated temperature crystallite morphology of nylon-6/layered silicate nanocomposites. Polymer 42, 1621–1631 (2001).

    Article  CAS  Google Scholar 

  31. Taub, A. I. Automotive materials: technology trends and challenges in the 21st century. MRS Bull. 31, 336–343 (2006).

    Article  Google Scholar 

  32. Park, J. H. & Jana, S. C. Mechanism of exfoliation of nanoclay particles in epoxy-clay nanocomposites. Macromolecules 36, 2758–2768 (2003).

    Article  CAS  Google Scholar 

  33. Kim, H., Abdala, A. A. & Macosko, C. W. Graphene/polymer nanocomposites. Macromolecules 43, 6515–6530 (2010).

    Article  CAS  Google Scholar 

  34. Wang, L., Lau, J., Thomas, E. L. & Boyce, M. C. Co-continuous composite materials for stiffness, strength, and energy dissipation. Adv. Mater. 23, 1524–1529 (2011).

    Article  CAS  Google Scholar 

  35. Kim, Y. Y. et al. An artificial biomineral formed by incorporation of copolymer micelles in calcite crystals. Nat. Mater. 10, 890–896 (2011).

    Article  CAS  Google Scholar 

  36. Rocco, C. A. & Kalisz, R. E. Mycelium structures containing nanocomposite materials and method. US patent 8,283,153 B2 (2012).

  37. Tran, C. D., Chen, J., Keum, J. K. & Naskar, A. K. A new class of renewable thermoplastics with extraordinary performance from nanostructured lignin-elastomers. Adv. Funct. Mater. 26, 2677–2685 (2016).

    Article  CAS  Google Scholar 

  38. Akcora, P. et al. Anisotropic self-assembly of spherical polymer-grafted nanoparticles. Nat. Mater. 8, 354–359 (2009).

    Article  CAS  Google Scholar 

  39. Mauter, M. S., Elimelech, M. & Osuji, C. O. Nanocomposites of vertically aligned single-walled carbon nanotubes by magnetic alignment and polymerization of a lyotropic precursor. ACS Nano 4, 6651–6658 (2010).

    Article  CAS  Google Scholar 

  40. Zhao, Y. et al. Small-molecule-directed nanoparticle assembly towards stimuli-responsive nanocomposites. Nat. Mater. 8, 979–985 (2009).

    Article  CAS  Google Scholar 

  41. Kumar, S. K. & Krishnamoorti, R. Nanocomposites: structure, phase behavior, and properties. Annu. Rev. Chem. Biomol. Eng. 1, 37–58 (2010).

    Article  CAS  Google Scholar 

  42. Holt, A. P. et al. Controlling interfacial dynamics: covalent bonding versus physical adsorption in polymer nanocomposites. ACS Nano 10, 6843–6853 (2016).

    Article  CAS  Google Scholar 

  43. Dzenis, Y. Structural nanocomposites. Science 319, 419–420 (2008).

    Article  CAS  Google Scholar 

  44. Ottaviani, R. A., Ulicny, J. C. & Golden, M. A. Magnetorheological nanocomposite elastomer for releasable attachment applications. US patent 7,430,788 B2 (2008).

  45. Naebe, M. et al. Mechanical property and structure of covalent functionalised graphene/epoxy nanocomposites. Sci. Rep. 4, 4375 (2014).

    Article  Google Scholar 

  46. Rafiee, M. A. et al. Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano. 3, 3884–3890 (2009).

    Article  CAS  Google Scholar 

  47. Hegde, M. et al. SWCNT induced crystallization in an amorphous all-aromatic poly (ether imide). Macromolecules 46, 1492–1503 (2013).

    Article  CAS  Google Scholar 

  48. Wang, L., Weng, L., Song, S. & Sun, Q. Mechanical properties and microstructure of polyetheretherketone–hydroxyapatite nanocomposite materials. Mater. Lett. 64, 2201–2204 (2010).

    Article  CAS  Google Scholar 

  49. Kalaitzidou, K., Fukushima, H. & Drzal, L. T. A new compounding method for exfoliated graphite–polypropylene nanocomposites with enhanced flexural properties and lower percolation threshold. Compos. Sci. Technol. 67, 2045–2051 (2007).

    Article  CAS  Google Scholar 

  50. Liu, P. et al. Layered and scrolled nanocomposites with aligned semi-infinite graphene inclusions at the platelet limit. Science. 353, 364–367 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge support from the Laboratory Directed Research and Development Program and Technology Innovation Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the US Department of Energy. J.K.K. also acknowledges the financial support of the Center for Nanophase Materials Sciences and the Spallation Neutron Source, which are sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit K. Naskar.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naskar, A., Keum, J. & Boeman, R. Polymer matrix nanocomposites for automotive structural components. Nature Nanotech 11, 1026–1030 (2016). https://doi.org/10.1038/nnano.2016.262

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2016.262

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing