Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Past achievements and future challenges in the development of optically transparent electrodes

Abstract

Transparent conductive electrodes play important roles in information and energy technologies. These materials, particularly transparent conductive oxides, are widely used as transparent electrodes across technical fields such as low-emissivity coatings, flat-panel displays, thin-film solar cells and organic light-emitting diodes. This Review begins by summarizing the properties and applications of transparent conductive oxides such as In2O3, SnO2, ZnO and TiO2. Owing to the increasing demand for raw materials — especially indium — scientists are currently searching for alternatives to indium tin oxide. Carbon nanotube and metal nanowire networks, as well as regular metal grids, have been investigated for use as transparent conductive electrodes. This Review compares these materials and the recently 'rediscovered' graphene with today's established transparent conductive oxides.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic structures of different TCEs on flat glass substrates.
Figure b1: Hall mobilities of single crystalline and polycrystalline zinc oxide.
Figure 2: Optical transmittance T and sheet resistances Rs of TCE layers.
Figure 3: Figure of merit ΦH and transmittance T of TCE materials.

Similar content being viewed by others

References

  1. Ginley, D. S., Hosono, H. & Paine, D. C. Handbook of Transparent Conductors (Springer, 2010).

    Google Scholar 

  2. Wright, A. W. On the production of transparent metallic films by the electrical discharge in exhausted tubes. Am. J. Sci. 3rd Series 13, 49–55 (1877).

    Google Scholar 

  3. Bädeker, K. Über die elektrische Leitfähigkeit und die thermoelektrische Kraft einiger Schwermetallverbindungen. Ann. Phys. 22, 749–766 (1907).

    Article  Google Scholar 

  4. Minami, T. Transparent conducting oxide semiconductors for transparent electrodes. Semicond. Sci. Tech. 20, S35–S44 (2005).

    Article  ADS  Google Scholar 

  5. Wagner, C. Fehlordnungserscheinungen in kristallisierten polaren Verbindungen als Grundlage für Elektronen- und Ionenleitung. Z. Elektrochem. 39, 543–545 (1933).

    Google Scholar 

  6. Holland, L. & Siddall, G. The properties of some reactively sputtered metal oxide films. Vacuum 3, 375–391 (1953).

    Article  ADS  Google Scholar 

  7. Aitchison, R. E. Transparent semiconducting oxide films. Austr. J. Appl. Phys. 5, 10–17 (1954).

    Google Scholar 

  8. Fuchs, K. The conductivity of thin metallic films according to the electron theory of metals. Proc. Camb. Phil. Soc. 11, 100–108 (1938).

    Article  ADS  Google Scholar 

  9. Mayadas, A. F. & Shatzkes, M. Electrical-resistivity model for polycrystalline films: the case of arbitrary reflection at external surfaces. Phys. Rev. B 1, 1382–1389 (1970).

    Article  ADS  Google Scholar 

  10. Preston, J. S. Constitution and mechanism of the selenium rectifier photocell. Proc. R. Soc. Lond. A 202, 449–466 (1950).

    Article  ADS  Google Scholar 

  11. McMaster, H. A. Electrically conducting films and method of application. UK patent (1947).

  12. Hutson, A. R. Piezoelectricity and conductivity in ZnO and CdS. Phys. Rev. Lett. 4, 505–507 (1960).

    Article  ADS  Google Scholar 

  13. van Boort, H. J. J. & Groth, R. Low-pressure sodium lamps with indium oxide filters. Phil. Tech. Rev. 29, 47–48 (1968).

    Google Scholar 

  14. Köstlin, H., Jost, R. & Lems, W. Optical and electrical properties of doped In2O3 films. Phys. Stat. Sol. A 29, 87–93 (1975).

    Article  ADS  Google Scholar 

  15. White, D. L. & Feldman, M. Liquid-crystal light valves. Electron. Lett. 6, 837–839 (1970).

    Article  Google Scholar 

  16. Lampert, C. M. Heat mirror coatings for energy conserving windows. Sol. Energ. Mat. 6, 1–41 (1981).

    Article  Google Scholar 

  17. Hamberg, I. & Granqvist, C. G. Evaporated Sn-doped In2O3 films: basic optical properties and applications to energy-efficient windows. J. Appl. Phys. 60, R123–R159 (1986).

    Article  ADS  Google Scholar 

  18. Szczyrbowski, J., Bräuer, G., Ruske, M., Schilling, H. & Zmelty, A. New low emissivity coating based on TwinMag sputtered TiO2 and Si3N4 layers. Thin Solid Films 351, 254–259 (1999).

    Article  ADS  Google Scholar 

  19. Grosse, P., Hertling, R. & Müggenburg, T. Design of low emissivity systems based on a three-layer coating. J. Non-Cryst. Solids 218, 38–43 (1997).

    Article  ADS  Google Scholar 

  20. Riedel, S., Röber, J. & Geßner, T. Electrical properties of copper films produced by MOCVD. Microelectr. Eng. 33, 165–172 (1997).

    Article  Google Scholar 

  21. Granqvist, C. G. Transparent conductors for solar energy and energy efficiency: a broad-brush picture. Int. J. Nanotech. 6, 785–798 (2009).

    Article  Google Scholar 

  22. Betz, U., Olsson, M. K., Marthy, J., Escola, M. F. & Atamny, F. Thin films engineering of indium tin oxide: large area flat panel displays application. Surf. Coat. Techn. 200, 5751–5759 (2006).

    Article  Google Scholar 

  23. Katayama, M. TFT-LCD technology. Thin Solid Films 341, 140–147 (1999).

    Article  ADS  Google Scholar 

  24. Chopra, K. L., Major, S. & Pandya, D. K. Transparent conductors: a status review. Thin Solid Films 102, 1–46 (1983).

    Article  ADS  Google Scholar 

  25. Rech, B. & Wagner, H. Potential of amorphous silicon solar cells. Appl. Phys. A 69, 155–167 (1999).

    Article  ADS  Google Scholar 

  26. Fortunato, E., Ginley, D., Hosono, H. & Paine, D. C. Transparent conductive oxides for photovoltaics. MRS Bull. 32, 242–247 (2007).

    Article  Google Scholar 

  27. Klenk, R. in Transparent Conductive Zinc Oxide: Basics and Application in Thin Film Solar Cells (eds Ellmer, K., Klein, A. & Rech, B.) Ch 9 (Springer, 2008).

    Google Scholar 

  28. Edwards, P. P., Porch, A., Jones, M. O., Morgan, D. V. & Perks, R. M. Basic materials physics of transparent conducting oxides. Dalton Trans. 19, 2995–2302 (2004).

    Article  Google Scholar 

  29. Ellmer, K. Resistivity of polycrystalline zinc oxide films: current status and physical limit. J. Phys. D: Appl. Phys. 34, 3097–3108 (2001).

    Article  ADS  Google Scholar 

  30. Hosono, H., Kikuchi, N., Ueda, N., Kawazoe, H. & Shimidzu, K. Amorphous transparent electroconductor 2CdOGeO2: conversion of amorphous insulating cadmium germanate by ion implantation. Appl. Phys. Lett. 67, 2663–2665 (1995).

    Article  ADS  Google Scholar 

  31. Narushima, S., Orita, M., Hirano, M. & Hosono, H. Electronic structure and transport properties in the transparent amorphous oxide semiconductor 2CdOGeO2 . Phys. Rev. B 66, 035203 (2002).

    Article  ADS  Google Scholar 

  32. Hosono, H. Ionic amorphous oxide semiconductors: material design, carrier transport, and device application. J. Non-Cryst. Solids 352, 851–858 (2006).

    Article  ADS  Google Scholar 

  33. Nomura, K. et al. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 432, 488–492 (2004).

    Article  ADS  Google Scholar 

  34. Taylor, M. P. et al. The remarkable thermal stability of amorphous In-Zn-O transparent conductors. Adv. Func. Mater. 18, 3169–3178 (2008).

    Article  ADS  Google Scholar 

  35. Jeong, J. K. The status and perspectives of metal oxide thin-film transistors for active matrix flexible displays. Semicond. Sci. Tech. 26, 034008 (2011).

    Article  ADS  Google Scholar 

  36. Furubayashi, Y. et al. A transparent metal: Nb-doped anatase TiO2 . Appl. Phys. Lett. 86, 252101 (2005).

    Article  ADS  Google Scholar 

  37. Kumar, A. & Zhou, C. The race to replace tin-doped indium oxide: which material will win? Nano Lett. 4, 11–14 (2010).

    Google Scholar 

  38. Eritt, M., May, C., Leo, K., Toerker, M. & Radehaus, C. OLED manufacturing for large area lighting applications. Thin Solid Films 518, 3042–3045 (2010).

    Article  ADS  Google Scholar 

  39. Bender, M. et al. Dependence of film composition and thickness on optical and electrical properties of ITO-metal-ITO multilayers. Thin Solid Films 326, 67–71 (1998).

    Article  ADS  Google Scholar 

  40. Lee, J.-Y., Connor, S. T., Cui, Y. & Peumans, P. Solution-processed metal nanowire mesh transparent electrodes. Nano Lett. 8, 689–692 (2008).

    Article  ADS  Google Scholar 

  41. Kang, M.-G. & Guo, L. J. Nanoimprinted semitransparent metal electrodes and their application in organic light-emitting diodes. Adv. Mater. 19, 1391–1396 (2007).

    Article  Google Scholar 

  42. De, S., King, P. J., Lyons, P. E., Khan, U. & Coleman, J. N. Size effects and the problem with percolation in nanostructured transparent conductors. ACS Nano 4, 7064–7072 (2010).

    Article  Google Scholar 

  43. Pramanik, D., Sievers, A. J. & Silsbee, R. H. The spectral selectivity of conducting micromeshes. Sol. Energ. Mater. 2, 81–91 (1979).

    Article  ADS  Google Scholar 

  44. Kang, M.-G., Xu, T., Park, H. J., Luo, X. & Guo, L. J. Efficiency enhancement of organic solar cells using transparent plasmonic Ag nanowire electrodes. Adv. Mater. 22, 4378–4383 (2010).

    Article  Google Scholar 

  45. Ahn, S. H. & Guo, L. J. Large-area roll-to-roll and roll-to-plate nanoimprint lithography: a step toward high-throughput application of continuous nanoimprinting. ACS Nano 3, 2304–2310 (2009).

    Article  Google Scholar 

  46. Hu, L., Wu, H. & Cui, Y. Metal nanogrids, nanowires, and nanofibers for transparent electrodes. MRS Bull. 36, 760–765 (2011).

    Article  Google Scholar 

  47. Kang, M.-G., Park, H. J., Ahn, S. H., Xu, T. & Guo, L. J. Toward low-cost, high-efficiency, and scalable organic solar cells with transparent metal electrode and improved domain morphology. IEEE J. Sel. Top. Quant. Electron. 16, 1807–1820 (2010).

    Article  ADS  Google Scholar 

  48. Hu, L., Hecht, D. S. & Grüner, G. Percolation in transparent and conducting carbon nanotube networks. Nano Lett. 4, 2513–2517 (2004).

    Article  ADS  Google Scholar 

  49. Iijima, S. Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991).

    Article  ADS  Google Scholar 

  50. Doherty, E. M. et al. The spatial uniformity and electromechanical stability of transparent, conductive films of single walled nanotubes. Carbon 47, 2466–2473 (2009).

    Article  Google Scholar 

  51. Bae, S. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotechnol. 5, 574–578 (2010).

    Article  ADS  Google Scholar 

  52. Kim, Y. H. et al. Highly conductive PEDOT:PSS electrode with optimized solvent and thermal post-treatment for ITO-free organic solar cells. Adv. Func. Mater. 21, 1076–1081 (2011).

    Article  Google Scholar 

  53. de Heer, W. A. Epitaxial graphene: a new electronic material for the 21st century. MRS Bull. 36, 632–639 (2011).

    Article  Google Scholar 

  54. Bonaccorso, F., Sun, Z., Hasan, T. & Ferrari, A. C. Graphene photonics and optoelectronics. Nature Photon. 4, 611–622 (2010).

    Article  ADS  Google Scholar 

  55. Shirakawa, H., Louis, E. J., MacDiarmid, A. G., Chiang, C. K. & Heeger, A. J. Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x . J. Chem. Soc. Chem. Comm. 578–580 (1977).

  56. Groenendaal, L. B., Jonas, F., Freitag, D., Pielartzik, H. & Reynolds, J. R. Poly(3,4-ethylenedioxythiophene) and its derivatives: past, present, and future. Adv. Mat. 12, 481–494 (2000).

    Article  Google Scholar 

  57. Manifacier, J. C. Thin metallic oxides as transparent conductors. Thin Solid Films 90, 297–308 (1982).

    Article  ADS  Google Scholar 

  58. Hartnagel, H. L., Dawar, A. L., Jain, A. K. & Jagadish, C. Semiconducting Transparent Thin Films (Institute of Physics, 1995).

    Google Scholar 

  59. Ellmer, K., Klein, A. & Rech, B. Transparent Conductive Zinc Oxide: Basics and Applications in Thin Film Solar Cells. 443 (Springer, Berlin, 2008).

  60. Sun, Y., Wu, Q. & Shi, G. Graphene based new energy materials. Energ. Env. Sci. 4, 1113–1132 (2011).

    Article  Google Scholar 

  61. Hecht, D. S., Hu, L. & Irvin, G. Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv. Mat. 23, 1482–1513 (2011).

    Article  Google Scholar 

  62. Seeger, K. Semiconductor Physics Ch 4 (Springer, 1991).

    Book  MATH  Google Scholar 

  63. Pankove, J. I. Optical Processes in Semiconductors Ch 1 (Dover, 1971).

    Google Scholar 

  64. Hass, J., de Heer, W. A. & Conrad, E. H. The growth and morphology of epitaxial multilayer graphene. J. Phys. Condens. Mat. 20, 323202 (2008).

    Article  Google Scholar 

  65. Peelaers, H., Kioupakis, E. & de Walle, C. G. V. Fundamental limits on optical transparency of transparent conducting oxides: free-carrier absorption in SnO2 . Appl. Phys. Lett. 100, 011914 (2012).

    Article  ADS  Google Scholar 

  66. Haacke, G. New figure of merit for transparent conductors. J. Appl. Phys. 47, 4086–4089 (1976).

    Article  ADS  Google Scholar 

  67. Glover, R. E. & Tinkham, M. Conductivity of superconducting films for photon energies between 0.3 and 40 kTc . Phys. Rev. 108, 243–256 (1957).

    Article  ADS  Google Scholar 

  68. Dressel, M. & Grüner, G. Electrodynamics of Solids Ch 8(Cambridge Univ., 2002).

    Book  Google Scholar 

  69. Barnes, T. M. et al. Comparing the fundamental physics and device performance of transparent, conductive nanostructred networks with conventional transparent oxides. Adv. Energ. Mat. 2, 353–360 (2012).

    Article  Google Scholar 

  70. Ohring, M. The Materials Science of Thin Films Ch 3, 4 (Academic, 1992).

    MATH  Google Scholar 

  71. Szyszka, B. in Transparent Conductive Zinc Oxide: Basics and Application in Thin Film Solar Cells (eds Ellmer, K., Klein, A. & Rech, B.) 187–233 (Springer, 2008).

    Book  Google Scholar 

  72. Fay, S. & Shah, A. in Transparent Conductive Zinc Oxide: Basics and Application in Thin Film Solar Cells (eds Ellmer, K., Klein, A. & Rech, B.) 235–302 (Springer, 2008).

    Book  Google Scholar 

  73. Arbab, M. Sputter-deposited low-emissivity coatings on glass. MRS Bull. 22, 27–35 (1997).

    Article  Google Scholar 

  74. Arnaud, A. Industrial production of coated glass: future trend for expanding needs. J. Non-Cryst. Solids 218, 12–18 (1997).

    Article  ADS  Google Scholar 

  75. Sherman, A. Atomic Layer Deposition for Nanotechnology Ch 1 (Ivoryton, 2008).

    Google Scholar 

  76. Lee, B. D.-J. et al. Structural and electrical properties of atomic layer deposited Al-doped ZnO films. Adv. Func. Mat. 21, 448–455 (2011).

    Article  Google Scholar 

  77. De, S. et al. Silver nanowire networks as flexible, transparent, conducting films: extremely high DC to optical conductivity ratios. ACS Nano 3, 1767–1774 (2009).

    Article  Google Scholar 

  78. Katsnelson, M. I., Novoselov, K. S. & Geim, A. K. Chiral tunnelling and the Klein paradox in graphene. Nature Phys. 2, 620–625 (2006).

    Article  ADS  Google Scholar 

  79. Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–201 (2005).

    Article  ADS  Google Scholar 

  80. Suk, J. W. et al. Transfer of CVD-grown monolayer graphene onto arbitrary substrates. ACS Nano 5, 6916–6924 (2011).

    Article  Google Scholar 

  81. Xu, M., Fujita, D., Sagisaka, K., Watanabe, E. & Hanagata, N. Production of extended single-layer graphene. ACS Nano 5, 1522–1528 (2011).

    Article  Google Scholar 

  82. Biswas, C. & Lee, Y. H. Graphene versus carbon nanotubes in electronic devices. Adv. Func. Mat. 21, 3806–3826 (2011).

    Article  Google Scholar 

  83. Tsai, T.-H. & Wu, Y.-F. Wet etching mechanisms of ITO films in oxalic acid. Microelectr. Eng. 83, 536–541 (2006).

    Article  Google Scholar 

  84. Greiner, D., Papathanasiou, N., Pfug, A., Ruske, F. & Klenk, R. Influence of damp heat on the optical and electrical properties of Al-doped zinc oxide. Thin Solid Films 517, 2291–2294 (2009).

    Article  ADS  Google Scholar 

  85. Kim, K. S. et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706–710 (2009).

    Article  ADS  Google Scholar 

  86. Szczyrbowski, J., Dietrich, A. & Hartig, K. Bendable silver-based low emissivity coatings on glass. Sol. Energ. Mat. 19, 43–53 (1989).

    Article  Google Scholar 

  87. Fraser, D. B. & Cook, H. D. Highly conductive, transparent films of sputtered In2–xSnxO3–y . J. Electrochem. Soc. 119, 1368–1374 (1972).

    Article  Google Scholar 

  88. Martínez, L., Ghosh, D. S., Giurgola, S., Vergani, P. & Pruneri, V. Stable transparent Ni electrodes. Opt. Mat. 31, 1115–1117 (2009).

    Article  Google Scholar 

  89. Dimopoulos, T., Radnoczi, G. Z., Pécz, B. & Brückl, H. Characterization of ZnO:Al/Au/ZnO:Al trilayers for high performance transparent conducting electrodes. Thin Solid Films 519, 1470–1474 (2010).

    Article  ADS  Google Scholar 

  90. Gillham, E. J., Preston, J. S. & Wiliams, B. E. A study of transparent, highly conductive gold films. Phil. Mag. 46, 1051–1071 (1955).

    Article  Google Scholar 

  91. Holland, L. & Siddall, G. Heat-reflecting windows using gold and bismuth oxide films. Br. J. Appl. Phys. 9, 359–361 (1958).

    Article  ADS  Google Scholar 

  92. Ellmer, K. in Transparent Conductive Zinc Oxide: Basics and Application in Thin Film Solar Cells (eds Ellmer, K., Klein, A. & Rech, B.) 44 (Springer, 2008).

    Book  Google Scholar 

  93. Klaassen, D. B. M. A unified mobility model for device simulation-i: Model equations and concentration dependence. Solid-State Electr. 35, 953–959 (1992).

    Article  ADS  Google Scholar 

  94. Ellmer, K. in Handbook of Transparent Conductors (eds Ginley, D. S., Hosono, H. & Paine, D. C.) 193–264 (Springer, 2010).

    Google Scholar 

  95. Ellmer, K. & Mientus, R. Carrier transport in polycrystalline transparent conductive oxides: a comparative study of zinc oxide and indium oxide. Thin Solid Films 516, 4620–4627 (2008).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Part of this work was supported by the German Federal Ministry of Education and Research (BMBF). K. Harbauer is acknowledged for preparing part of Fig. 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Ellmer.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ellmer, K. Past achievements and future challenges in the development of optically transparent electrodes. Nature Photon 6, 809–817 (2012). https://doi.org/10.1038/nphoton.2012.282

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2012.282

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing