Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

High-resolution electroluminescent imaging of pressure distribution using a piezoelectric nanowire LED array

Abstract

Emulation of the sensation of touch through high-resolution electronic means could become important in future generations of robotics and human–machine interfaces. Here, we demonstrate that a nanowire light-emitting diode-based pressure sensor array can map two-dimensional distributions of strain with an unprecedented spatial resolution of 2.7 µm, corresponding to a pixel density of 6,350 dpi. Each pixel is composed of a single n-ZnO nanowire/p-GaN light-emitting diode, the emission intensity of which depends on the local strain owing to the piezo-phototronic effect. A pressure map can be created by reading out, in parallel, the electroluminescent signal from all of the pixels with a time resolution of 90 ms. The device may represent a major step towards the digital imaging of mechanical signals by optical means, with potential applications in artificial skin, touchpad technology, personalized signatures, bio-imaging and optical microelectromechanical systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematical device design and experimental approaches for imaging pressure distribution using the piezo-phototronic effect.
Figure 2: Proposed mechanism for enhanced light emission in a NW-LED by the piezo-phototronic effect.
Figure 3: Device fabrication.
Figure 4: Characterization of NW-LED arrays.
Figure 5: Enhanced light emission of NW-LEDs under compressive strain by the piezo-phototronic effect.
Figure 6: High-resolution parallel imaging of pressure/force distribution.

Similar content being viewed by others

References

  1. Boland, J. J. Flexible electronics within touch of artificial skin. Nature Mater. 9, 790–792 (2010).

    Article  ADS  Google Scholar 

  2. Kim, D. H. et al. Epidermal electronics. Science 333, 838–843 (2011).

    Article  ADS  Google Scholar 

  3. Mannsfeld, S. C. B. et al. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nature Mater. 9, 859–864 (2010).

    Article  ADS  Google Scholar 

  4. Takei, K. et al. Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. Nature Mater. 9, 821–826 (2010).

    Article  ADS  Google Scholar 

  5. Lipomi, D. J. et al. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nature Nanotech. 6, 788–792 (2011).

    Article  ADS  Google Scholar 

  6. Someya, T. et al. A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. Proc. Natl Acad. Sci. USA 101, 9966–9970 (2004).

    Article  ADS  Google Scholar 

  7. Zhu, J. J. et al. Effects of doping concentrations on the regeneration of Bragg gratings in hydrogen loaded optical fibers. Opt. Commun. 284, 2808–2811 (2011).

    Article  ADS  Google Scholar 

  8. Shambat, G. et al. Ultrafast direct modulation of a single-mode photonic crystal nanocavity light-emitting diode. Nature Commun. 2, 539 (2011).

    Article  ADS  Google Scholar 

  9. Wang, Z. L. & Song, J. H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242–246 (2006).

    Article  ADS  Google Scholar 

  10. Wang, Z. L. Piezopotential gated nanowire devices: piezotronics and piezo-phototronics. Nano Today 5, 540–552 (2010).

    Article  Google Scholar 

  11. Wang, Z. L. Progress in piezotronics and piezo-phototronics. Adv. Mater. 24, 4632–4646 (2012).

    Article  Google Scholar 

  12. Wang, Z. L. et al. Lateral nanowire/nanobelt based nanogenerators, piezotronics and piezo-phototronics. Mater. Sci. Eng. R 70, 320–329 (2010).

    Article  Google Scholar 

  13. Wang, Z. L. Piezotronics and Piezo-phototronics (Springer, 2013).

    Google Scholar 

  14. Hu, Y. F. et al. Optimizing the power output of a ZnO photocell by piezopotential. ACS Nano 4, 4220–4224 (2010).

    Article  Google Scholar 

  15. Boxberg, F., Sondergaard, N. & Xu, H. Q. Photovoltaics with piezoelectric core–shell nanowires. Nano Lett. 10, 1108–1112 (2010).

    Article  ADS  Google Scholar 

  16. Pan, C. F. et al. Enhanced Cu2S/CdS coaxial nanowire solar cells by piezo-phototronic effect. Nano Lett. 12, 3302–3307 (2012).

    Article  ADS  Google Scholar 

  17. Yang, Q. et al. Enhancing sensitivity of a single ZnO micro-/nanowire photodetector by piezo-phototronic effect. ACS Nano 4, 6285–6291 (2010).

    Article  Google Scholar 

  18. Gao, P. et al. Photoconducting response on bending of individual ZnO nanowires. J. Mater. Chem. 19, 1002–1005 (2009).

    Article  Google Scholar 

  19. Dong, L. et al. Piezo-phototronic effect of CdSe nanowires. Adv. Mater. 24, 5470–5475 (2012).

    Article  Google Scholar 

  20. Yang, Q., Wang, W. H., Xu, S. & Wang, Z. L. Enhancing light emission of ZnO microwire-based diodes by piezo-phototronic effect. Nano Lett. 11, 4012–4017 (2011).

    Article  ADS  Google Scholar 

  21. Yang, Q. et al. Largely enhanced efficiency in ZnO nanowire/p-polymer hybridized inorganic/organic ultraviolet light-emitting diode by piezo-phototronic effect. Nano Lett. 13, 607–613 (2013).

    Article  ADS  Google Scholar 

  22. Lee, S. H. et al. Ordered arrays of ZnO nanorods grown on periodically polarity-inverted surfaces. Nano Lett. 8, 2419–2422 (2008).

    Article  ADS  Google Scholar 

  23. Jasinski, J. et al. Application of channeling-enhanced electron energy-loss spectroscopy for polarity determination in ZnO nanopillars. Appl. Phys. Lett. 92, 093104 (2008).

    Article  ADS  Google Scholar 

  24. Bae, S. Y. et al. Synthesis of gallium nitride nanowires with uniform [001] growth direction. J. Cryst. Growth 258, 296–301 (2003).

    Article  ADS  Google Scholar 

  25. Xu, S. et al. Ordered nanowire array blue/near-UV light emitting diodes. Adv. Mater. 22, 4749–4753 (2010).

    Article  Google Scholar 

  26. Wang, Z. L. Piezotronic and piezophototronic effects. J. Phys. Chem. Lett. 1, 1388–1393 (2010).

    Article  Google Scholar 

  27. Zhang, Y. & Wang, Z. L. Theory of piezo-phototronics for light-emitting diodes. Adv. Mater. 24, 4712–4718 (2012).

    Article  Google Scholar 

  28. Lai, E., Kim, W. & Yang, P. D. Vertical nanowire array-based light emitting diodes. Nano Res. 1, 123–128 (2008).

    Article  Google Scholar 

  29. Hwang, D. K. et al. p-ZnO/n-GaN heterostructure ZnO light-emitting diodes. Appl. Phys. Lett. 86, 222101 (2005).

    Article  ADS  Google Scholar 

  30. Gao, Y. & Wang, Z. L. Electrostatic potential in a bent piezoelectric nanowire. The fundamental theory of nanogenerator and nanopiezotronics. Nano Lett. 7, 2499–2505 (2007).

    Article  ADS  Google Scholar 

  31. Xu, S. et al. Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems. Nat. Commun. 4, 1543 (2013).

    Article  ADS  Google Scholar 

  32. Yankovich, A. et al. Stable p-type conduction from sb-decorated head-to-head basal plane inversion domain boundaries in ZnO nanowires. Nano Lett. 12, 1311–1316 (2012).

    Article  ADS  Google Scholar 

  33. Zhang, S. et al. Growth and replication of ordered ZnO nanowire arrays on general flexible substrates. J. Mater. Chem. 20, 10606–10610 (2010).

    Article  Google Scholar 

  34. Pan, C. F. et al. Fiber-based hybrid nanogenerators for/as self-powered systems in biological liquid. Angew. Chem. Int. Ed. 50, 11192–11196 (2011).

    Article  Google Scholar 

  35. Patolsky, F. et al. Detection, stimulation, and inhibition of neuronal signals with high-density nanowire transistor arrays. Science 313, 1100–1104 (2006).

    Article  ADS  Google Scholar 

  36. Yan, H. et al. Programmable nanowire circuits for nanoprocessors. Nature 470, 240–244 (2011).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering (award no. DE-FG02-07ER46394), the National Science Foundation and the Knowledge Innovation Program of the Chinese Academy of Sciences (KJCX2-YW-M13). The authors thank Yushen Zhou and Sihong Wang for cleanroom work.

Author information

Authors and Affiliations

Authors

Contributions

C.F.P. and Z.L.W. conceived and designed the project. C.F.P., L.D., G.Z., S.M.N., R.M.Y., Q.Y. and Y.L. designed, constructed and tested the apparatus. C.F.P., L.D. and Z.L.W. acquired the data and performed the analysis and simulation. Z.L.W. and C.F.P contributed to the preparation of the manuscript. All authors contributed to editing the manuscript.

Corresponding author

Correspondence to Zhong Lin Wang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3348 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pan, C., Dong, L., Zhu, G. et al. High-resolution electroluminescent imaging of pressure distribution using a piezoelectric nanowire LED array. Nature Photon 7, 752–758 (2013). https://doi.org/10.1038/nphoton.2013.191

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2013.191

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing