Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices

Abstract

Finding higher efficiency schemes for electron–hole separation is of paramount importance for realizing more efficient conversion of solar energy in photovoltaic and photocatalytic devices. Plasmonic energy conversion has been proposed as a promising alternative to conventional electron–hole separation in semiconductor devices. This emerging method is based on the generation of hot electrons in plasmonic nanostructures through electromagnetic decay of surface plasmons. Here, the fundamentals of hot-electron generation, injection and regeneration are reviewed, with special attention paid to recent progress towards photovoltaic devices. This new energy-conversion method potentially offers high conversion efficiencies, while keeping fabrication costs low. However, several considerations regarding the materials, architectures and fabrication methods used need to be carefully evaluated to advance this field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Surface-plasmon decay, hot-electron generation and injection.
Figure 2: Hot-electron generation by plasmonic nanostructures.
Figure 3: Hot-electron regeneration and shape effects.
Figure 4: Materials for plasmonic solar cells.

Similar content being viewed by others

References

  1. Atwater, H. A. The promise of plasmonics. Sci. Am. 296, 56–62 (2007).

    Article  Google Scholar 

  2. Mendes, M. J., Luque, A., Tobías, I. & Martí, A. Plasmonic light enhancement in the near-field of metallic nanospheroids for application in intermediate band solar cells. Appl. Phys. Lett. 95, 071105 (2009).

    Article  ADS  Google Scholar 

  3. Atwater, H. A. & Polman, A. Plasmonics for improved photovoltaic devices. Nature Mater. 9, 205–213 (2010).

    Article  ADS  Google Scholar 

  4. Zhao, G., Kozuka, H. & Yoko, T. Sol—gel preparation and photoelectrochemical properties of TiO2 films containing Au and Ag metal particles. Thin Solid Films 277, 147–154 (1996).

    Article  ADS  Google Scholar 

  5. Tian, Y. & Tatsuma, T. Plasmon-induced photoelectrochemistry at metal nanoparticles supported on nanoporous TiO2 . Chem. Commun. 1810–1811 (2004).

  6. Tian, Y. & Tatsuma, T. Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles. J. Am. Chem. Soc. 127, 7632–7637 (2005).

    Article  Google Scholar 

  7. Knight, M. W., Sobhani, H., Nordlander, P. & Halas, N. J. Photodetection with active optical antennas. Science 332, 702–704 (2011).

    Article  ADS  Google Scholar 

  8. Wang, F. & Melosh, N. A. Plasmonic energy collection through hot carrier extraction. Nano Lett. 11, 5426–5430 (2011).

    Article  ADS  Google Scholar 

  9. Linic, S., Christopher, P. & Ingram, D. B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nature Mater. 10, 911–921 (2011).

    Article  ADS  Google Scholar 

  10. Nishijima, Y. et al. Near-infrared plasmon-assisted water oxidation. J. Phys. Chem. Lett. 3, 1248–1252 (2012).

    Article  Google Scholar 

  11. Du, L., Furube, A., Hara, K., Katoh, R. & Tachiya, M. Ultrafast plasmon induced electron injection mechanism in gold–TiO2 nanoparticle system. J. Photochem. Photobiol. C 15, 21–30 (2013).

    Article  Google Scholar 

  12. Knight, M. W. et al. Embedding plasmonic nanostructure diodes enhances hot electron emission. Nano Lett. 13, 1687–1692 (2013).

    Article  ADS  Google Scholar 

  13. Mubeen, S. et al. An autonomous photosynthetic device in which all charge carriers derive from surface plasmons. Nature Nanotechnol. 8, 247–251 (2013).

    Article  ADS  Google Scholar 

  14. Semenov, A. D., Gol'tsman, G. N. & Sobolewski, R. Hot-electron effect in superconductors and its applications for radiation sensors. Supercond. Sci. Technol. 15, R1 (2002).

    Article  ADS  Google Scholar 

  15. Hertz, H. Ueber einen Einfluss des ultravioletten Lichtes auf die electrische Entladung. Ann. Phys. 267, 983–1000 (1887).

    Article  Google Scholar 

  16. Gadzuk, J. W. On the detection of chemically-induced hot electrons in surface processes: from X-ray edges to Schottky barriers. J. Phys. Chem. B 106, 8265–8270 (2002).

    Article  Google Scholar 

  17. Nienhaus, H. Electronic excitations by chemical reactions on metal surfaces. Surf. Sci. Rep. 45, 1–78 (2002).

    Article  ADS  Google Scholar 

  18. O'Regan, B. & Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 (1991).

    Article  ADS  Google Scholar 

  19. Grätzel, M. Photoelectrochemical cells. Nature 414, 338–344 (2001).

    Article  ADS  Google Scholar 

  20. Sönnichsen, C. et al. Drastic reduction of plasmon damping in gold nanorods. Phys. Rev. Lett. 88, 077402 (2002).

    Article  ADS  Google Scholar 

  21. Hofmann, J. & Steinmann, W. Plasma resonance in the photoemission of silver. Phys. Status Solidi B 30, K53–K56 (1968).

    Article  ADS  Google Scholar 

  22. Endriz, J. G. & Spicer, W. E. Surface-plasmon-one-electron decay and its observation in photoemission. Phys. Rev. Lett. 24, 64–68 (1970).

    Article  ADS  Google Scholar 

  23. Lehmann, J. et al. Surface plasmon dynamics in silver nanoparticles studied by femtosecond time-resolved photoemission. Phys. Rev. Lett. 85, 2921–2924 (2000).

    Article  ADS  Google Scholar 

  24. Inagaki, T., Kagami, K. & Arakawa, E. T. Photoacoustic observation of nonradiative decay of surface plasmons in silver. Phys. Rev. B 24, 3644–3646 (1981).

    Article  ADS  Google Scholar 

  25. White, T. P. & Catchpole, K. R. Plasmon-enhanced internal photoemission for photovoltaics: theoretical efficiency limits. Appl. Phys. Lett. 101, 073905 (2012).

    Article  ADS  Google Scholar 

  26. Berglund, C. N. & Spicer, W. E. Photoemission studies of copper and silver: experiment. Phys. Rev. 136, A1044–A1064 (1964).

    Article  ADS  Google Scholar 

  27. Rycenga, M. et al. Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem. Rev. 111, 3669–3712 (2011).

    Article  Google Scholar 

  28. Moskovits, M. Hot electrons cross boundaries. Science 332, 676–677 (2011).

    Article  ADS  Google Scholar 

  29. Nishijima, Y., Ueno, K., Yokota, Y., Murakoshi, K. & Misawa, H. Plasmon-assisted photocurrent generation from visible to near-infrared wavelength using a Au-nanorods/TiO2 electrode. J. Phys. Chem. Lett. 1, 2031–2036 (2010).

    Article  Google Scholar 

  30. Ohko, Y. et al. Multicolour photochromism of TiO2 films loaded with silver nanoparticles. Nature Mater. 2, 29–31 (2003).

    Article  ADS  Google Scholar 

  31. Naoi, K., Ohko, Y. & Tatsuma, T. TiO2 films loaded with silver nanoparticles: control of multicolor photochromic behavior. J. Am. Chem. Soc. 126, 3664–3668 (2004).

    Article  Google Scholar 

  32. Hirakawa, T. & Kamat, P. V. Photoinduced electron storage and surface plasmon modulation in Ag@TiO2 clusters. Langmuir 20, 5645–5647 (2004).

    Article  Google Scholar 

  33. Lana-Villarreal, T. & Gómez, R. Tuning the photoelectrochemistry of nanoporous anatase electrodes by modification with gold nanoparticles: development of cathodic photocurrents. Chem. Phys. Lett. 414, 489–494 (2005).

    Article  ADS  Google Scholar 

  34. Yu, K., Tian, Y. & Tatsuma, T. Size effects of gold nanaoparticles on plasmon-induced photocurrents of gold–TiO2 nanocomposites. Phys. Chem. Chem. Phys. 8, 5417–5420 (2006).

    Article  Google Scholar 

  35. Sakai, N., Fujiwara, Y., Takahashi, Y. & Tatsuma, T. Plasmon-resonance-based generation of cathodic photocurrent at electrodeposited gold nanoparticles coated with TiO2 films. ChemPhysChem 10, 766–769 (2009).

    Article  Google Scholar 

  36. Kowalska, E., Abe, R. & Ohtani, B. Visible light-induced photocatalytic reaction of gold-modified titanium(IV) oxide particles: action spectrum analysis. Chem. Commun. 241–243 (2009).

  37. Toyoda, T., Tsugawa, S. & Shen, Q. Photoacoustic spectra of Au quantum dots adsorbed on nanostructured TiO2 electrodes together with the photoelectrochemical current characteristics. J. Appl. Phys. 105, 034314 (2009).

    Article  ADS  Google Scholar 

  38. Gomes Silva, C., Juárez, R., Marino, T., Molinari, R. & García, H. Influence of excitation wavelength (UV or visible light) on the photocatalytic activity of titania containing gold nanoparticles for the generation of hydrogen or oxygen from water. J. Am. Chem. Soc. 133, 595–602 (2010).

    Article  Google Scholar 

  39. Kowalska, E., Mahaney, O. O. P., Abe, R. & Ohtani, B. Visible-light-induced photocatalysis through surface plasmon excitation of gold on titania surfaces. Phys. Chem. Chem. Phys. 12, 2344–2355 (2010).

    Article  Google Scholar 

  40. Ide, Y., Matsuoka, M. & Ogawa, M. Efficient visible-light-induced photocatalytic activity on gold-nanoparticle-supported layered titanate. J. Am. Chem. Soc. 132, 16762–16764 (2010).

    Article  Google Scholar 

  41. Valverde-Aguilar, G., García-Macedo, J. A., Rentería-Tapia, V. & Aguilar-Franco, M. Photoconductivity studies on amorphous and crystalline TiO2 films doped with gold nanoparticles. Appl. Phys. A 103, 659–663 (2011).

    Article  ADS  Google Scholar 

  42. Ingram, D. B., Christopher, P., Bauer, J. L. & Linic, S. Predictive model for the design of plasmonic metal/semiconductor composite photocatalysts. ACS Catal. 1, 1441–1447 (2011).

    Article  Google Scholar 

  43. Tanaka, A. et al. Gold–titanium(IV) oxide plasmonic photocatalysts prepared by a colloid-photodeposition method: correlation between physical properties and photocatalytic activities. Langmuir 28, 13105–13111 (2012).

    Article  Google Scholar 

  44. Shi, X., Ueno, K., Takabayashi, N. & Misawa, H. Plasmon-enhanced photocurrent generation and water oxidation with a gold nanoisland-loaded titanium dioxide photoelectrode. J. Phys. Chem. C 117, 2494–2499 (2013).

    Article  Google Scholar 

  45. Gong, D. et al. Silver decorated titanate/titania nanostructures for efficient solar driven photocatalysis. J. Solid State Chem. 189, 117–122 (2012).

    Article  ADS  Google Scholar 

  46. Sakai, N., Sasaki, T., Matsubara, K. & Tatsuma, T. Layer-by-layer assembly of gold nanoparticles with titania nanosheets: control of plasmon resonance and photovoltaic properties. J. Mater. Chem. 20, 4371–4378 (2010).

    Article  Google Scholar 

  47. Shiraishi, Y. et al. Platinum nanoparticles supported on anatase titanium dioxide as highly active catalysts for aerobic oxidation under visible light irradiation. ACS Catal. 2, 1984–1992 (2012).

    Article  Google Scholar 

  48. Wu, F. et al. Photocatalytic activity of Ag/TiO2 nanotube arrays enhanced by surface plasmon resonance and application in hydrogen evolution by water splitting. Plasmonics 8, 501–508 (2012).

    Article  Google Scholar 

  49. Chen, K. et al. Effect of Ag nanoparticle size on the photoelectrochemical properties of Ag decorated TiO2 nanotube arrays. J. Alloys Compd 554, 72–79 (2013).

    Article  Google Scholar 

  50. Chen, Z. H. et al. Vertically aligned ZnO nanorod arrays sentisized with gold nanoparticles for Schottky barrier photovoltaic cells. J. Phys. Chem. C 113, 13433–13437 (2009).

    Article  ADS  Google Scholar 

  51. Chen, H. M. et al. Plasmon inducing effects for enhanced photoelectrochemical water splitting: X-ray absorption approach to electronic structures. ACS Nano 6, 7362–7372 (2012).

    Article  Google Scholar 

  52. Han, Z. et al. Visible-light photocatalytic application of hierarchical Au-ZnO flower-rod heterostructures via surface plasmon resonance. Plasmonics 8, 1193–1202 (2013).

    Article  Google Scholar 

  53. Primo, A., Marino, T., Corma, A., Molinari, R. & García, H. Efficient visible-light photocatalytic water splitting by minute amounts of gold supported on nanoparticulate CeO2 obtained by a biopolymer templating method. J. Am. Chem. Soc. 133, 6930–6933 (2011).

    Article  Google Scholar 

  54. Kominami, H., Tanaka, A. & Hashimoto, K. Mineralization of organic acids in aqueous suspensions of gold nanoparticles supported on cerium(IV) oxide powder under visible light irradiation. Chem. Commun. 46, 1287–1289 (2010).

    Article  Google Scholar 

  55. Chen, X., Li, P., Tong, H., Kako, T. & Ye, J. Nanoarchitectonics of a Au nanoprism array on WO3 film for synergistic optoelectronic response. Sci. Technol. Adv. Mater. 12, 044604 (2011).

    Article  Google Scholar 

  56. Zhou, X., Hu, C., Hu, X., Peng, T. & Qu, J. Plasmon-assisted degradation of toxic pollutants with Ag−AgBr/Al2O3 under visible-light irradiation. J. Phys. Chem. C 114, 2746–2750 (2010).

    Article  Google Scholar 

  57. Hu, C. et al. Plasmon-induced photodegradation of toxic pollutants with Ag−AgI/Al2O3 under visible-light irradiation. J. Am. Chem. Soc. 132, 857–862 (2009).

    Article  Google Scholar 

  58. Wang, P. et al. Ag@AgCl: a highly efficient and stable photocatalyst active under visible light. Angew. Chem. 47, 7931–7933 (2008).

    Article  Google Scholar 

  59. Kochuveedu, S. T., Kim, D.-P. & Kim, D. H. Surface-plasmon-induced visible light photocatalytic activity of TiO2 nanospheres decorated by Au nanoparticles with controlled configuration. J. Phys. Chem. C 116, 2500–2506 (2012).

    Article  Google Scholar 

  60. Zhang, N., Liu, S., Fu, X. & Xu, Y.-J. Synthesis of M@TiO2 (M = Au, Pd, Pt) core-shell nanocomposites with tunable photoreactivity. J. Phys. Chem. C 115, 9136–9145 (2011).

    Article  Google Scholar 

  61. Zheng, Z. et al. Facile in situ synthesis of visible-light plasmonic photocatalysts M@TiO2 (M = Au, Pt, Ag) and evaluation of their photocatalytic oxidation of benzene to phenol. J. Mater. Chem. 21, 9079–9087 (2011).

    Article  Google Scholar 

  62. Furube, A., Du, L., Hara, K., Katoh, R. & Tachiya, M. Ultrafast plasmon-induced electron transfer from gold nanodots into TiO2 nanoparticles. J. Am. Chem. Soc. 129, 14852–14853 (2007).

    Article  Google Scholar 

  63. Tian, Y., Wang, X., Zhang, D., Shi, X. & Wang, S. Effects of electron donors on the performance of plasmon-induced photovoltaic cell. J. Photochem. Photobiol., A 199, 224–229 (2008).

    Article  Google Scholar 

  64. Tian, Y., Shi, X., Lu, C., Wang, X. & Wang, S. Charge separation in solid-state gold nanoparticles-sensitized photovoltaic cell. Electrochem. Commun. 11, 1603–1605 (2009).

    Article  Google Scholar 

  65. Du, L. et al. Plasmon-induced charge separation and recombination dynamics in gold−TiO2 nanoparticle systems: dependence on TiO2 particle size. J. Phys. Chem. C 113, 6454–6462 (2009).

    Article  Google Scholar 

  66. Inouye, H., Tanaka, K., Tanahashi, I. & Hirao, K. Ultrafast dynamics of nonequilibrium electrons in a gold nanoparticle system. Phys. Rev. B 57, 11334–11340 (1998).

    Article  ADS  Google Scholar 

  67. Kreibig, U. & Vollmer, M. Optical Properties of Metal Clusters. (Springer, 1995).

    Book  Google Scholar 

  68. Langhammer, C., Yuan, Z., Zorić, I. & Kasemo, B. Plasmonic properties of supported Pt and Pd nanostructures. Nano Lett. 6, 833–838 (2006).

    Article  ADS  Google Scholar 

  69. Skoplaki, E. & Palyvos, J. A. On the temperature dependence of photovoltaic module electrical performance: a review of efficiency/power correlations. Sol. Energy 83, 614–624 (2009).

    Article  ADS  Google Scholar 

  70. Kazuma, E., Sakai, N. & Tatsuma, T. Nanoimaging of localized plasmon-induced charge separation. Chem. Commun. 47, 5777–5779 (2011).

    Article  Google Scholar 

  71. Kazuma, E. & Tatsuma, T. Photoelectrochemical analysis of allowed and forbidden multipole plasmon modes of polydisperse Ag nanorods. J. Phys. Chem. C 117, 2435–3441 (2013).

    Article  Google Scholar 

  72. Yu, K., Sakai, N. & Tatsuma, T. Plasmon resonance-based solid-state photovoltaic devices. Electrochem. Commun. 76, 161 (2008).

    Article  Google Scholar 

  73. Takahashi, Y. & Tatsuma, T. Electrodeposition of thermally stable gold and silver nanoparticle ensembles through a thin alumina nanomask. Nanoscale 2, 1494–1499 (2010).

    Article  ADS  Google Scholar 

  74. Takahashi, Y. & Tatsuma, T. Solid state photovoltaic cells based on localized surface plasmon-induced charge separation. Appl. Phys. Lett. 99, 182110–182113 (2011).

    Article  ADS  Google Scholar 

  75. Reineck, P. et al. A solid-state plasmonic solar cell via metal nanoparticle self-assembly. Adv. Mater. 24, 4750–4755 (2012).

    Article  Google Scholar 

  76. Nakanishi, H. et al. Photoconductance and inverse photoconductance in films of functionalized metal nanoparticles. Nature 460, 371–375 (2009).

    Article  ADS  Google Scholar 

  77. Warren, S. C., Walker, D. A. & Grzybowski, B. A. Plasmoelectronics: coupling plasmonic excitation with electron flow. Langmuir 28, 9093–9102 (2012).

    Article  Google Scholar 

  78. Mubeen, S., Hernandez-Sosa, G., Moses, D., Lee, J. & Moskovits, M. Plasmonic photosensitization of a wide band gap semiconductor: converting plasmons to charge carriers. Nano Lett. 11, 5548–5552 (2011).

    Article  ADS  Google Scholar 

  79. Son, M.-S. et al. Surface plasmon enhanced photoconductance and single electron effects in mesoporous titania nanofibers loaded with gold nanoparticles. Appl. Phys. Lett. 96, 023115 (2010).

    Article  ADS  Google Scholar 

  80. Lee, Y. K. et al. Surface plasmon-driven hot electron flow probed with metal-semiconductor nanodiodes. Nano Lett. 11, 4251–4255 (2011).

    Article  ADS  Google Scholar 

  81. Lee, Y. K., Park, J. & Park, J. Y. The effect of dye molecules and surface plasmons in photon-induced hot electron flows detected on Au/TiO2 nanodiodes. J. Phys. Chem. C 116, 18591–18596 (2012).

    Article  Google Scholar 

  82. Wadell, C., Antosiewicz, T. J. & Langhammer, C. Optical absorption engineering in stacked plasmonic Au-SiO2-Pd nanoantennas. Nano Lett. 12, 4784–4790 (2012).

    Article  ADS  Google Scholar 

  83. Garcia, G. et al. Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals. Nano Lett. 11, 4415–4420 (2011).

    Article  ADS  Google Scholar 

  84. Pradhan, A. K., Holloway, T., Mundle, R., Dondapati, H. & Bahoura, M. Energy harvesting in semiconductor-insulator-semiconductor junctions through excitation of surface plasmon polaritons. Appl. Phys. Lett. 100, 061127 (2012).

    Article  ADS  Google Scholar 

  85. Green, M. A., Emery, K., Hishikawa, Y., Warta, W. & Dunlop, E. D. Solar cell efficiency tables (version 39). Prog. Photovoltaics Res. Appl. 20, 12–20 (2012).

    Article  Google Scholar 

  86. Green, M. A. Third generation photovoltaics: solar cells for 2020 and beyond. Physica E 14, 65–70 (2002).

    Article  ADS  Google Scholar 

  87. Mokkapati, S. & Catchpole, K. R. Nanophotonic light trapping in solar cells. J. Appl. Phys. 112, 101101 (2012).

    Article  ADS  Google Scholar 

  88. Atar, F. B. et al. Plasmonically enhanced hot electron based photovoltaic device. Opt. Express 21, 7196–7201 (2013).

    Article  ADS  Google Scholar 

  89. Binns, C. Nanoclusters deposited on surfaces. Surf. Sci. Rep. 44, 1–49 (2001).

    Article  ADS  Google Scholar 

  90. Palmer, R. E., Pratontep, S. & Boyen, H.-G. Nanostructured surfaces from size-selected clusters. Nature Mater. 2, 443–448 (2003).

    Article  ADS  Google Scholar 

  91. Wegner, K., Piseri, P., Vahedi-Tafreshi, H. & Milani, P. Cluster beam deposition: a tool for nanoscale science and technology. J. Phys. D 39, R439 (2006).

    Article  Google Scholar 

  92. Perelaer, J. & Schubert, U. S. Novel approaches for low temperature sintering of inkjet-printed inorganic nanoparticles for roll-to-roll (R2R) applications. J. Mater. Res. 28, 564–573 (2013).

    Article  ADS  Google Scholar 

  93. Kittel, C. Introduction to Solid State Physics. (Wiley, 1976).

    MATH  Google Scholar 

  94. Hövel, H., Fritz, S., Hilger, A., Kreibig, U. & Vollmer, M. Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping. Phys. Rev. B 48, 18178–18188 (1993).

    Article  ADS  Google Scholar 

  95. Mendelsberg, R. J. et al. Achieving high mobility ZnO:Al at very high growth rates by dc filtered cathodic arc deposition. J. Phys. D 44, 232003 (2011).

    Article  ADS  Google Scholar 

  96. West, P. R. et al. Searching for better plasmonic materials. Las. Photon. Rev. 4, 795–808 (2010).

    Article  ADS  Google Scholar 

  97. Naik, G. V., Kim, J. & Boltasseva, A. Oxides and nitrides as alternative plasmonic materials in the optical range. Opt. Mater. Express 1, 1090–1099 (2011).

    Article  ADS  Google Scholar 

  98. Naik, G. V. et al. Titanium nitride as a plasmonic material for visible and near-infrared wavelengths. Opt. Mater. Express 2, 478–489 (2012).

    Article  ADS  Google Scholar 

  99. Cushing, S. K. et al. Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor. J. Am. Chem. Soc. 134, 15033–15041 (2012).

    Article  Google Scholar 

  100. Magesh, G., Viswanathan, B., Viswanath, R. P. & Varadarajan, T. K. Photocatalytic behavior of CeO2-TiO2 system for the degradation of methylene blue. Indian J. Chem. A 48, 480–488 (2009).

    Google Scholar 

  101. Taft, E. A., Philipp, H. R. & Apker, L. Photoelectric emission from the valence band in AgBr. Phys. Rev. 110, 876–878 (1958).

    Article  ADS  Google Scholar 

  102. Park, Y., Choong, V., Gao, Y., Hsieh, B. R. & Tang, C. W. Work function of indium tin oxide transparent conductor measured by photoelectron spectroscopy. Appl. Phys. Lett. 68, 2699–2701 (1996).

    Article  ADS  Google Scholar 

  103. Helander, M. G., Greiner, M. T., Wang, Z. B., Tang, W. M. & Lu, Z. H. Work function of fluorine doped tin oxide. J. Vac. Sci. Technol. A 29, 011019 (2011).

    Article  Google Scholar 

  104. Wang, W. et al. Dependence of aluminum-doped zinc oxide work function on surface cleaning method as studied by ultraviolet and X-ray photoelectron spectroscopies. Appl. Surf. Sci. 257, 3884–3887 (2011).

    Article  ADS  Google Scholar 

  105. Yoshida, K., Aoki, T., Suzuki, A., Matsushita, T. & Okuda, M. Work function controlled transparent conductive films with zinc oxide system by pulsed laser deposition method. J. Vac. Soc. Japan 51, 172–174 (2008).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author thanks A. Anders and R. Mendelsberg for insightful discussions. This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Building Technology, of the US Department of Energy under Contract No. DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to César Clavero.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clavero, C. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nature Photon 8, 95–103 (2014). https://doi.org/10.1038/nphoton.2013.238

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2013.238

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing