Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Lasing in direct-bandgap GeSn alloy grown on Si

Abstract

Large-scale optoelectronics integration is limited by the inability of Si to emit light efficiently1, because Si and the chemically well-matched Ge are indirect-bandgap semiconductors. To overcome this drawback, several routes have been pursued, such as the all-optical Si Raman laser2 and the heterogeneous integration of direct-bandgap III–V lasers on Si3,4,5,6,7. Here, we report lasing in a direct-bandgap group IV system created by alloying Ge with Sn8 without mechanically introducing strain9,10. Strong enhancement of photoluminescence emerging from the direct transition with decreasing temperature is the signature of a fundamental direct-bandgap semiconductor. For T ≤ 90 K, the observation of a threshold in emitted intensity with increasing incident optical power, together with strong linewidth narrowing and a consistent longitudinal cavity mode pattern, highlight unambiguous laser action11. Direct-bandgap group IV materials may thus represent a pathway towards the monolithic integration of Si-photonic circuitry and complementary metal–oxide–semiconductor (CMOS) technology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Crystal quality and dislocation analysis.
Figure 2: Temperature-dependent photoluminescence measurements and modelling.
Figure 3: Optical gain determination via the variable stripe length (VSL) method.
Figure 4: Optically pumped direct-bandgap GeSn laser.

Similar content being viewed by others

References

  1. Iyer, S. S. & Xie, Y. H. Light emission from silicon. Science 260, 40–46 (1993).

    Article  ADS  Google Scholar 

  2. Rong, H. et al. An all-silicon Raman laser. Nature 433, 292–294 (2005).

    Article  ADS  Google Scholar 

  3. Fang, A. W. et al. Electrically pumped hybrid AlGaInAs–silicon evanescent laser. Opt. Express 14, 9203–9210 (2006).

    Article  ADS  Google Scholar 

  4. Justice, J. et al. Wafer-scale integration of group III–V lasers on silicon using transfer printing of epitaxial layers. Nature Photon. 6, 612–616 (2012).

    Article  ADS  Google Scholar 

  5. Yang, H. et al. Transfer-printed stacked nanomembrane lasers on silicon. Nature Photon. 6, 617–622 (2012).

    ADS  Google Scholar 

  6. Liu, H. et al. Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate. Nature Photon. 5, 416–419 (2011).

    Article  ADS  Google Scholar 

  7. Chen, R. et al. Nanolasers grown on silicon. Nature Photon. 5, 170–175 (2011).

    Article  ADS  Google Scholar 

  8. Chen, R. et al. Demonstration of a Ge/GeSn/Ge quantum-well microdisk resonator on silicon: enabling high-quality Ge(Sn) materials for micro- and nanophotonics. Nano Lett. 14, 37–43 (2014).

    Article  ADS  Google Scholar 

  9. Sánchez-Pérez, J. R. et al. Direct-bandgap light-emitting germanium in tensilely strained nanomembranes. Proc. Natl Acad. Sci. USA 108, 18893–18898 (2011).

    Article  ADS  Google Scholar 

  10. Süess, M. J. et al. Analysis of enhanced light emission from highly strained germanium microbridges. Nature Photon. 7, 466–472 (2013).

    Article  ADS  Google Scholar 

  11. Samuel, I. D. W., Namdas, E. B. & Turnbull, G. A. How to recognize lasing. Nature Photon. 3, 546–549 (2009).

    Article  ADS  Google Scholar 

  12. Xia, F., Sekaric, L. & Vlasov, Y. Ultracompact optical buffers on a silicon chip. Nature Photon. 1, 65–71 (2007).

    Article  ADS  Google Scholar 

  13. Assefa, S., Xia, F. & Vlasov, Y. A. Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects. Nature 464, 80–84 (2010).

    Article  ADS  Google Scholar 

  14. Xu, Q., Schmidt, B., Pradhan, S. & Lipson, M. Micrometre-scale silicon electro-optic modulator. Nature 435, 325–327 (2005).

    Article  ADS  Google Scholar 

  15. Soref, R. Mid-infrared photonics in silicon and germanium. Nature Photon. 4, 495–497 (2010).

    Article  ADS  Google Scholar 

  16. Roelkens, G. et al. Silicon-based photonic integration beyond the telecommunication wavelength range. IEEE J. Sel. Top. Quantum Electron. 20, 394–404 (2014).

    Article  ADS  Google Scholar 

  17. Duan, G.-H. et al. Hybrid III–V on silicon lasers for photonic integrated circuits on silicon. IEEE J. Sel. Top. Quantum Electron. 20, 158–170 (2014).

    Article  ADS  Google Scholar 

  18. Heck, M. J. R. & Bowers, J. E. Energy efficient and energy proportional optical interconnects for multi-core processors: driving the need for on-chip sources. IEEE J. Sel. Top. Quantum Electron. 20, 1–12 (2014).

    Article  Google Scholar 

  19. Liu, J. et al. Tensile-strained, n-type Ge as a gain medium for monolithic laser integration on Si. Opt. Express 15, 11272–11277 (2007).

    Article  ADS  Google Scholar 

  20. Liu, J., Sun, X., Camacho-Aguilera, R., Kimerling, L. C. & Michel, J. Ge-on-Si laser operating at room temperature. Opt. Lett. 35, 679–681 (2010).

    Article  ADS  Google Scholar 

  21. Camacho-Aguilera, R. E. et al. An electrically pumped germanium laser. Opt. Express 20, 11316–11320 (2012).

    Article  ADS  Google Scholar 

  22. Carroll, L. et al. Direct-gap gain and optical absorption in germanium correlated to the density of photoexcited carriers, doping, and strain. Phys. Rev. Lett. 109, 057402 (2012).

    Article  ADS  Google Scholar 

  23. De Kersauson, M. et al. Optical gain in single tensile-strained germanium photonic wire. Opt. Express 19, 17925–17934 (2011).

    Article  ADS  Google Scholar 

  24. Sukhdeo, D. S., Nam, D., Kang, J.-H., Brongersma, M. L. & Saraswat, K. C. Direct bandgap germanium-on-silicon inferred from 5.7% 〈100〉 uniaxial tensile strain. Photon. Res. 2, A8 (2014).

    Article  Google Scholar 

  25. Jenkins, D. & Dow, J. Electronic properties of metastable GexSn1–x alloys. Phys. Rev. B 36, 7994–8000 (1987).

    Article  ADS  Google Scholar 

  26. Lu Low, K., Yang, Y., Han, G., Fan, W. & Yeo, Y. Electronic band structure and effective mass parameters of Ge1–xSnx alloys. J. Appl. Phys. 112, 103715 (2012).

    Article  ADS  Google Scholar 

  27. Gupta, S., Magyari-Köpe, B., Nishi, Y. & Saraswat, K. C. Achieving direct band gap in germanium through integration of Sn alloying and external strain. J. Appl. Phys. 113, 073707 (2013).

    Article  ADS  Google Scholar 

  28. He, G. & Atwater, H. A. Interband transitions in SnxGe1–x alloys. Phys. Rev. Lett. 79, 1937–1940 (1997).

    Article  ADS  Google Scholar 

  29. Grzybowski, G. et al. Next generation of Ge1–ySny (y = 0.01–0.09) alloys grown on Si(100) via Ge3H8 and SnD4: reaction kinetics and tunable emission. Appl. Phys. Lett. 101, 072105 (2012).

    Article  ADS  Google Scholar 

  30. Chen, R. et al. Increased photoluminescence of strain-reduced, high-Sn composition Ge1–xSnx alloys grown by molecular beam epitaxy. Appl. Phys. Lett. 99, 181125 (2011).

    Article  ADS  Google Scholar 

  31. Wirths, S. et al. Tensely strained GeSn alloys as optical gain media. Appl. Phys. Lett. 103, 192110 (2013).

    Article  ADS  Google Scholar 

  32. Wirths, S. et al. Band engineering and growth of tensile strained Ge/(Si)GeSn heterostructures for tunnel field effect transistors. Appl. Phys. Lett. 102, 192103 (2013).

    Article  ADS  Google Scholar 

  33. Gencarelli, F. et al. Crystalline properties and strain relaxation mechanism of CVD grown GeSn. ECS J. Solid State Sci. Technol. 2, P134–P137 (2013).

    Article  Google Scholar 

  34. Gerthsen, D., Biegelsen, D., Ponce, F. A. & Tramontana, J. C. Misfit dislocations in GaAs heteroepitaxy on (001) Si. J. Cryst. Growth 106, 157–165 (1990).

    Article  ADS  Google Scholar 

  35. Sun, X., Liu, J., Kimerling, L. C. & Michel, J. Direct gap photoluminescence of n-type tensile-strained Ge-on-Si. Appl. Phys. Lett. 95, 011911 (2009).

    Article  ADS  Google Scholar 

  36. Ryu, M.-Y., Harris, T. R., Yeo, Y. K., Beeler, R. T. & Kouvetakis, J. Temperature-dependent photoluminescence of Ge/Si and Ge1–ySny/Si, indicating possible indirect-to-direct bandgap transition at lower Sn content. Appl. Phys. Lett. 102, 171908 (2013).

    Article  ADS  Google Scholar 

  37. Geiger, R. et al. Excess carrier lifetimes in Ge layers on Si. Appl. Phys. Lett. 104, 062106 (2014).

    Article  ADS  Google Scholar 

  38. Shaklee, K. L., Nahory, R. E. & Leheny, R. F. Optical gain in semiconductors. J. Lumin. 7, 284–309 (1973).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the hospitality of the IR beamline of the SLS, where the photoluminescence experiments were performed. Part of this work was funded by the Swiss National Science Foundation (SNF). This research received funding for CVD growth investigations from the European Community's Seventh Framework Programme (grant agreement no. 619509; project E2SWITCH) and the BMBF project UltraLowPow (16ES0060 K).

Author information

Authors and Affiliations

Authors

Contributions

J.M.H. fabricated the Ge/Si substrates. S.W. and D.B. planned the GeSn epitaxial growth experiments and S.W. and N.v.d.D. fabricated the GeSn/Ge/Si samples. M.L. and S.C. carried out the TEM measurements and analysis. S.W., D.B., G.M., N.v.d.D. and T.S. carried out crystal structure analysis including strain determination via XRD and RBS. Z.I. performed the bandstructure simulations. S.W. and R.G. performed the optical measurements. R.G. and H.S. performed the JDOS modelling, gain analysis and mode simulations. R.G. processed the GeSn cavities. S.M., J.F., D.B., H.S. and D.G. supervised the experiments and coordinated data interpretation. S.W., H.S., R.G. and D.B. wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to S. Wirths or D. Buca.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1236 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wirths, S., Geiger, R., von den Driesch, N. et al. Lasing in direct-bandgap GeSn alloy grown on Si. Nature Photon 9, 88–92 (2015). https://doi.org/10.1038/nphoton.2014.321

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2014.321

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing