Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Flying particle sensors in hollow-core photonic crystal fibre

Abstract

Optical fibre sensors make use of diverse physical effects to measure parameters such as strain, temperature and electric field. Here we introduce a new class of reconfigurable fibre sensor, based on a ‘flying-particle’ optically trapped inside a hollow-core photonic crystal fibre and illustrate its use in electric field and temperature sensing with high spatial resolution. The electric field distribution near the surface of a multi-element electrode is measured with a resolution of 100 μm by monitoring changes in the transmitted light signal due to the transverse displacement of a charged silica microparticle trapped within the hollow core. Doppler-based velocity measurements are used to map the gas viscosity, and thus the temperature, along a hollow-core photonic crystal fibre. The flying-particle approach represents a new paradigm in fibre sensors, potentially allowing multiple physical quantities to be mapped with high positional accuracy over kilometre-scale distances.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of measurement procedures.
Figure 2: Measurements of the particle response at different pressures.
Figure 3: Measurement of the particle response at different powers.
Figure 4: Spatially resolved measurements of the electric field.
Figure 5: Temperature measurements.

Similar content being viewed by others

References

  1. Lee, B. Review of the present status of optical fiber sensors. Opt. Fiber Technol. 9, 57–79 (2003).

    Article  ADS  Google Scholar 

  2. Willsch, M. Fiber optical sensors in power generation. Proc. SPIE 8351, 835137 (2012).

    Article  Google Scholar 

  3. Grattan, K. T. V. & Sun, T. Fiber optic sensor technology: an overview. Sens. Actuat. Phys. 82, 40–61 (2000).

    Article  Google Scholar 

  4. Jackson, D. A., Lobo Ribeiro, A. B., Reekie, L. & Archambault, J. L. Simple multiplexing scheme for a fiber-optic grating sensor network. Opt. Lett. 18, 1192–1194 (1993).

    Article  ADS  Google Scholar 

  5. Kashyap, R. Fiber Bragg Gratings (Elsevier/Academic Press, 2009).

    Google Scholar 

  6. Cruz, J. L. et al. Fibre Bragg gratings tuned and chirped using magnetic fields. Electron. Lett. 33, 235–236 (1997).

    Article  Google Scholar 

  7. Cruz, J. L., Andres, M. V. & Hernandez, M. A. Faraday effect in standard optical fibers: dispersion of the effective Verdet constant. Appl. Opt. 35, 922–927 (1996).

    Article  ADS  Google Scholar 

  8. Laming, R. I. & Payne, D. N. Electric current sensors employing spun highly birefringent optical fibers. J. Lightw. Technol. 7, 2084–2094 (1989).

    Article  ADS  Google Scholar 

  9. Sun, L., Jiang, S. & Marciante, J. R. All-fiber optical magnetic-field sensor based on Faraday rotation in highly terbium-doped fiber. Opt. Express 18, 5407–5412 (2010).

    Article  ADS  Google Scholar 

  10. Huston, A. et al. Remote optical fiber dosimetry. Nucl. Instrum. Methods 184, 55–67 (2001).

    Article  Google Scholar 

  11. Bravo, M., Pinto, A. M. R., Lopez-Amo, M., Kobelke, J. & Schuster, K. High precision micro-displacement fiber sensor through a suspended-core Sagnac interferometer. Opt. Lett. 37, 202–204 (2012).

    Article  ADS  Google Scholar 

  12. Ashkin, A., Dziedzic, J., Bjorkholm, J. & Chu, S. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11, 288–290 (1986).

    Article  ADS  Google Scholar 

  13. Neuman, K. C. & Block, S. M. Optical trapping. Rev. Sci. Instrum. 75, 2787–2809 (2004).

    Article  ADS  Google Scholar 

  14. Bishop, A. I., Nieminen, T. A., Heckenberg, N. R. & Rubinsztein-Dunlop, H. Optical microrheology using rotating laser-trapped particles. Phys. Rev. Lett. 92, 198104 (2004).

    Article  ADS  Google Scholar 

  15. Yao, A., Tassieri, M., Padgett, M. & Cooper, J. Microrheology with optical tweezers. Lab. Chip 9, 2568–2575 (2009).

    Article  Google Scholar 

  16. Michihata, M., Takaya, Y., Miyoshi, T. & Hayashi, T. Evaluation of laser trapping probe properties for coordinate measurement. Proc. SPIE 6375, 637509 (2006).

    Article  Google Scholar 

  17. Pesce, G. et al. Mapping electric fields generated by microelectrodes using optically trapped charged microspheres. Lab. Chip 11, 4113–4116 (2011).

    Article  Google Scholar 

  18. Renn, M. J., Pastel, R. & Lewandowski, H. J. Laser guidance and trapping of mesoscale particles in hollow-core optical fibers. Phys. Rev. Lett. 82, 1574–1577 (1999).

    Article  ADS  Google Scholar 

  19. Schmidt, O. A., Garbos, M. K., Euser, T. G. & Russell, P. St. J. Metrology of laser-guided particles in air-filled hollow-core photonic crystal fiber. Opt. Lett. 37, 91–93 (2012).

    Article  ADS  Google Scholar 

  20. Euser, T. G., Garbos, M. K., Chen, J. S. Y. & Russell, P. St. J. Precise balancing of viscous and radiation forces on a particle in liquid-filled photonic bandgap fiber. Opt. Lett. 34, 3674–3676 (2009).

    Article  ADS  Google Scholar 

  21. Garbos, M. K., Euser, T. G., Schmidt, O. A., Unterkofler, S. & Russell, P. St. J. Doppler velocimetry on microparticles trapped and propelled by laser light in liquid-filled photonic crystal fiber. Opt. Lett. 36, 2020–2022 (2011).

    Article  ADS  Google Scholar 

  22. Schmidt, O. A., Euser, T. G. & Russell, P. St. J. Mode-based microparticle conveyor belt in air-filled hollow-core photonic crystal fiber. Opt. Express 21, 29383–29391 (2013).

    Article  ADS  Google Scholar 

  23. Benabid, F., Knight, J. & Russell, P. St. J. Particle levitation and guidance in hollow-core photonic crystal fiber. Opt. Express 10, 1195–1203 (2002).

    Article  ADS  Google Scholar 

  24. Pinto, A. M. R. & Lopez-Amo, M. Photonic crystal fibers for sensing applications. J. Sens. 2012, 1–21 (2012).

    Article  Google Scholar 

  25. Cubillas, A. M. et al. Photonic crystal fibres for chemical sensing and photochemistry. Chem. Soc. Rev. 42, 8629–8648 (2013).

    Article  Google Scholar 

  26. Ashkin, A. Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. Biophys. J. 61, 569–582 (1992).

    Article  Google Scholar 

  27. Hutchins, D. K., Harper, M. H. & Felder, R. L. Slip correction measurements for solid spherical particles by modulated dynamic light scattering. Aerosol Sci. Technol. 22, 202–218 (1995).

    Article  ADS  Google Scholar 

  28. Cox, R. G. & Brenner, H. The slow motion of a sphere through a viscous fluid towards a plane surface—II Small gap widths, including inertial effects. Chem. Eng. Sci. 22, 1753–1777 (1967).

    Article  Google Scholar 

  29. Sutherland, W. LII. The viscosity of gases and molecular force. Philos. Mag. Ser. 5 36, 507–531 (1893).

    Article  Google Scholar 

  30. White, F. M. Viscous Fluid Flow (McGraw-Hill, 1991).

    Google Scholar 

  31. Al Quddus, N., Moussa, W. A. & Bhattacharjee, S. Motion of a spherical particle in a cylindrical channel using arbitrary Lagrangian–Eulerian method. J. Colloid Interface Sci. 317, 620–630 (2008).

    Article  ADS  Google Scholar 

  32. Roberts, P. J. et al. Ultimate low loss of hollow-core photonic crystal fibres. Opt. Express 13, 236–244 (2005).

    Article  ADS  Google Scholar 

  33. Arita, Y., Mazilu, M. & Dholakia, K. Laser-induced rotation and cooling of a trapped microgyroscope in vacuum. Nature Commun. 4, 2374 (2013).

    Article  ADS  Google Scholar 

  34. Gieseler, J., Deutsch, B., Quidant, R. & Novotny, L. Subkelvin parametric feedback cooling of a laser-trapped nanoparticle. Phys. Rev. Lett. 109, 103603 (2012).

    Article  ADS  Google Scholar 

  35. Agate, B., Brown, C. T. A., Sibbett, W. & Dholakia, K. Femtosecond optical tweezers for in-situ control of two-photon fluorescence. Opt. Express 12, 3011–3017 (2004).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

P.St.J.R. conceived the idea, all authors designed the experimental setup and D.S.B. performed the experiments. D.S.B., T.G.E. and P.St.J.R. analysed the data and prepared the manuscript.

Corresponding authors

Correspondence to D. S. Bykov or T. G. Euser.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bykov, D., Schmidt, O., Euser, T. et al. Flying particle sensors in hollow-core photonic crystal fibre. Nature Photon 9, 461–465 (2015). https://doi.org/10.1038/nphoton.2015.94

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2015.94

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing