Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Quantifying how DNA stretches, melts and changes twist under tension

Abstract

In cells, DNA is constantly twisted, bent and stretched by numerous proteins mediating genome transactions. Understanding these essential biological processes requires in-depth knowledge of how DNA complies to mechanical stress. Two important physical features of DNA, helical structure and sequence, are not incorporated in current descriptions of DNA elasticity. Here we connect well-defined force–extension measurements with a new model for DNA elasticity: the twistable worm-like chain, in which DNA is considered a helical, elastic entity that complies to tension by extending and twisting. In addition, we reveal hitherto unnoticed stick–slip dynamics during DNA overstretching at 65 pN, caused by the loss of base-pairing interactions. An equilibrium thermodynamic model solely based on DNA sequence and elasticity is presented, which captures the full complexity of this transition. These results offer deep quantitative insight in the physical properties of DNA and present a new standard description of DNA mechanics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Force-induced strand unpeeling of DNA studied with fluorescence microscopy and force spectroscopy.
Figure 2: DNA unwinding under tension quantified using the twistable worm-like chain (tWLC) model.
Figure 3: Stick–slip dynamics are sequence-dependent and close to equilibrium.
Figure 4: Modelling of force-induced, sequence-specific unpeeling of dsDNA.

Similar content being viewed by others

References

  1. Odijk, T. Stiff chains and filaments under tension. Macromolecules 28, 7016–7018 (1995).

    Article  ADS  Google Scholar 

  2. Wang, M. D., Yin, H., Landick, R., Gelles, J. & Block, S. M. Stretching DNA with optical tweezers. Biophys. J. 72, 1335–1346 (1997).

    Article  ADS  Google Scholar 

  3. Smith, S. B., Cui, Y. & Bustamante, C. Overstretching B-DNA: The elastic response of individual double-stranded and single-stranded DNA molecules. Science 271, 795–799 (1996).

    Article  ADS  Google Scholar 

  4. Marko, J. F. & Siggia, E. D. Stretching DNA. Macromolecules 28, 8759–8770 (1995).

    Article  ADS  Google Scholar 

  5. Gore, J. et al. DNA overwinds when stretched. Nature 442, 836–839 (2006).

    Article  ADS  Google Scholar 

  6. Cluzel, P. et al. DNA: An extensible molecule. Science 271, 792–794 (1996).

    Article  ADS  Google Scholar 

  7. Léger, J. F. et al. Structural transitions of a twisted and stretched DNA molecule. Phys. Rev. Lett. 83, 1066–1069 (1999).

    Article  ADS  Google Scholar 

  8. Wenner, J. R., Williams, M. C., Rouzina, I. & Bloomfield, V. A. Salt dependence of the elasticity and overstretching transition of single DNA molecules. Biophys. J. 82, 3160–3169 (2002).

    Article  Google Scholar 

  9. Williams, M. C., Wenner, J. R., Rouzina, I. & Bloomfield, V. A. Entropy and heat capacity of DNA melting from temperature dependence of single molecule stretching. Biophys. J. 80, 1932–1939 (2001).

    Article  Google Scholar 

  10. Shokri, L., McCauley, M. J., Rouzina, I. & Williams, M. C. DNA overstretching in the presence of glyoxal: Structural evidence of force-induced DNA melting. Biophys. J. 95, 1248–1255 (2008).

    Article  Google Scholar 

  11. van Mameren, J. et al. Unraveling the structure of DNA during overstretching by using multicolor, single-molecule fluorescence imaging. Proc. Natl Acad. Sci. USA 106, 18231–18236 (2009).

    Article  ADS  Google Scholar 

  12. Gross, P., Farge, G., Peterman, E. J. G. & Wuite, G. J. L. Combining optical tweezers, single-molecule fluorescence microscopy, and microfuidics for studies of DNA-protein interactions. Methods Enzymol. 475, 427–453 (2010).

    Article  Google Scholar 

  13. Marko, J. F. Stretching must twist DNA. Europhys. Lett. 38, 183–188 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  14. Kamien, R. D., Lubensky, T. C., Nelson, P. & Ohern, C. S. Direct determination of DNA twist–stretch coupling. Europhys. Lett. 38, 237–242 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  15. Marko, J. F. DNA under high tension: Overstretching, undertwisting, and relaxation dynamics. Phys. Rev. E 57, 2134–2149 (1998).

    Article  ADS  Google Scholar 

  16. Bryant, Z. et al. Structural transitions and elasticity from torque measurements on DNA. Nature 424, 338–341 (2003).

    Article  ADS  Google Scholar 

  17. Sheinin, M. Y. & Wang, M. D. Twist–stretch coupling and phase transition during DNA supercoiling. Phys. Chem. Chem. Phys. 11, 4800–4803 (2009).

    Article  Google Scholar 

  18. Lionnet, T., Joubaud, S., Lavery, R., Bensimon, D. & Croquette, V. Wringing out DNA. Phys. Rev. Lett. 96, 1781021–1781024 (2006).

    Article  Google Scholar 

  19. Essevaz-Roulet, B., Bockelmann, U. & Heslot, F. Mechanical separation of the complementary strands of DNA. Proc. Natl Acad. Sci. USA 94, 11935–11940 (1997).

    Article  ADS  Google Scholar 

  20. Bockelmann, U., Essevaz-Roulet, B. & Heslot, F. Molecular stick–slip motion revealed by opening DNA with piconewton forces. Phys. Rev. Lett. 79, 4489–4492 (1997).

    Article  ADS  Google Scholar 

  21. Bockelmann, U., Thomen, P., Essevaz-Roulet, B., Viasnoff, V. & Heslot, F. Unzipping DNA with optical tweezers: High sequence sensitivity and force flips. Biophys. J. 82, 1537–1553 (2002).

    Article  Google Scholar 

  22. Rouzina, I. & Bloomfield, V. A. Force-induced melting of the DNA double helix-1. Thermodynamic analysis. Biophys. J. 80, 882–893 (2001).

    Article  Google Scholar 

  23. Liphardt, J., Onoa, B., Smith, S. B., Tinoco, I. & Bustamante, C. Reversible unfolding of single RNA molecules by mechanical force. Science 292, 733–737 (2001).

    Article  ADS  Google Scholar 

  24. Woodside, M. T. et al. Nanomechanical measurements of the sequence-dependent folding landscapes of single nucleic acid hairpins. Proc. Natl Acad. Sci. USA 103, 6190–6195 (2006).

    Article  ADS  Google Scholar 

  25. SantaLucia, J. A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbour thermodynamics. Proc. Natl Acad. Sci. USA 95, 1460–1465 (1998).

    Article  ADS  Google Scholar 

  26. Landau, L. & Lifshitz, E. Statistical Physics 3rd edn Vol. 5, Part 1 (Butterworth-Heinemann, 1980).

    MATH  Google Scholar 

  27. Albrecht, C. H., Neuert, G., Lugmaier, R. A. & Gaub, H. E. Molecular force balance measurements reveal that double-stranded DNA unbinds under force in rate-dependent pathways. Biophys. J. 94, 4766–4774 (2008).

    Article  Google Scholar 

  28. Clausen-Schaumann, H., Rief, M., Tolksdorf, C. & Gaub, H. E. Mechanical stability of single DNA molecules. Biophys. J. 78, 1997–2007 (2000).

    Article  Google Scholar 

  29. Calderon, C. P., Chen, W. H., Lin, K. J., Harris, N. C. & Kiang, C. H. Quantifying DNA melting transitions using single-molecule force spectroscopy. J. Phys. Condens. Matter 21, 034114 (2009).

    Article  Google Scholar 

  30. Paik, D. H. & Perkins, T. T. Overstretching DNA at 65 pN does not require peeling from free ends or nicks. J. Am. Chem. Soc. 133, 3219–3221 (2011).

    Article  Google Scholar 

  31. Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31, 3406–3415 (2003).

    Article  Google Scholar 

  32. Nollmann, M. et al. Multiple modes of Escherichia coli DNA gyrase activity revealed by force and torque. Nat. Struct. Mol. Biol. 14, 264–271 (2007).

    Article  Google Scholar 

  33. Hall, M. A. et al. High-resolution dynamic mapping of histone-DNA interactions in a nucleosome. Nat. Struct. Mol. Biol. 16, 124–129 (2009).

    Article  Google Scholar 

  34. Revyakin, A., Revyakin, A., Ebright, R. H. & Strick, T. R. Abortive initiation and productive initiation by RNA polymerase involve DNA scrunching. Science 314, 1139–1143 (2006).

    Article  ADS  Google Scholar 

  35. McCauley, M. J. & Williams, M. C. Review: Optical tweezers experiments resolve distinct modes of DNA-protein binding. Biopolymers 91, 265–282 (2009).

    Article  Google Scholar 

  36. Hegner, M., Smith, S. B. & Bustamante, C. Polymerization and mechanical properties of single RecA-DNA filaments. Proc. Natl Acad. Sci. USA 96, 10109–10114 (1999).

    Article  ADS  Google Scholar 

  37. Baumann, C. G., Smith, S. B., Bloomfield, V. A. & Bustamante, C. Ionic effects on the elasticity of single DNA molecules. Proc. Natl Acad. Sci. USA 94, 6185–6190 (1997).

    Article  ADS  Google Scholar 

  38. Bustamante, C., Marko, J. F., Siggia, E. D. & Smith, S. Entropic elasticity of lambda-phage DNA. Science 265, 1599–1600 (1994).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank J. Gore for communicating his experimental data. We thank M. Depken and C. Broederz for discussions. We thank M. Modesti for the kind gift of the eGFP labelled RPA. This work is part of the research program of the ‘Stichting voor Fundamenteel Onderzoek der Materie (FOM)’, which is financially supported by the ‘Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO)’ (N.L., E.J.G.P., G.J.L.W.). P.G. is supported by ATLAS, a European Commission-funded Marie Curie early stage training network. G.J.L.W. is recipient of a VICI grant from the ‘Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO)’. U.B. was supported by a KNAW visiting professor grant.

Author information

Authors and Affiliations

Authors

Contributions

P.G. performed experiments, the DNA unwinding modelling and analysis. N.L. performed the DNA unwinding analysis. L.B.O. assisted in the design of the study. U.B. developed the thermodynamical model for DNA unpeeling and assisted in the design of the study. E.J.G.P. and G.J.L.W. designed the study and assisted with the analysis. All the authors contributed to the writing of the paper.

Corresponding authors

Correspondence to Erwin J. G. Peterman or Gijs J. L. Wuite.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 881 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gross, P., Laurens, N., Oddershede, L. et al. Quantifying how DNA stretches, melts and changes twist under tension. Nature Phys 7, 731–736 (2011). https://doi.org/10.1038/nphys2002

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys2002

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing