Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Strongly exchange-coupled triplet pairs in an organic semiconductor

Abstract

From biological complexes to devices based on organic semiconductors, spin interactions play a key role in the function of molecular systems. For instance, triplet-pair reactions impact operation of organic light-emitting diodes as well as photovoltaic devices. Conventional models for triplet pairs assume they interact only weakly. Here, using electron spin resonance, we observe long-lived, strongly interacting triplet pairs in an organic semiconductor, generated via singlet fission. Using coherent spin manipulation of these two-triplet states, we identify exchange-coupled (spin-2) quintet complexes coexisting with weakly coupled (spin-1) triplets. We measure strongly coupled pairs with a lifetime approaching 3 μs and a spin coherence time approaching 1 μs, at 10 K. Our results pave the way for the utilization of high-spin systems in organic semiconductors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Temperature-dependent formation of exchange-coupled triplet pairs.
Figure 2: Strongly and weakly coupled pairs formed by singlet fission in TIPS-tetracene thin-film samples.
Figure 3: Rabi oscillations of weakly and strongly interacting triplets.
Figure 4: Lifetime and coherence of strongly and weakly coupled triplet pairs.
Figure 5: Quintet formation through time-dependent exchange interaction.

Similar content being viewed by others

References

  1. Ritz, T., Thalau, P., Phillips, J. B., Wiltschko, R. & Wiltschko, W. Resonance effects indicate a radical-pair mechanism for avian magnetic compass. Nature 429, 177–180 (2004).

    Article  ADS  Google Scholar 

  2. Baker, W., McCamey, D., Van Schooten, K., Lupton, J. M. & Boehme, C. Differentiation between polaron-pair and triplet-exciton polaron spin-dependent mechanisms in organic light-emitting diodes by coherent spin beating. Phys. Rev. B 84, 165205 (2011).

    Article  ADS  Google Scholar 

  3. Lubitz, W., Lendzian, F. & Bittl, R. Radicals, radical pairs and triplet states in photosynthesis. Acc. Chem. Res. 35, 313–320 (2002).

    Article  Google Scholar 

  4. Rao, A. et al. The role of spin in the kinetic control of recombination in organic photovoltaics. Nature 500, 435–439 (2013).

    Article  ADS  Google Scholar 

  5. Nguyen, T. D., Ehrenfreund, E. & Vardeny, Z. V. Spin-polarized light-emitting diode based on an organic bipolar spin valve. Science 337, 204–209 (2012).

    Article  ADS  Google Scholar 

  6. Swenberg, C. E., Geacintov, N. & Birks, J. in Organic Molecular Photophysics (ed. Birks, J. B.) 489–564 (Wiley, 1973).

    Google Scholar 

  7. Smith, M. B. & Michl, J. Singlet fission. Chem. Rev. 110, 6891–6936 (2010).

    Article  Google Scholar 

  8. Smith, M. B. & Michl, J. Recent advances in singlet fission. Annu. Rev. Phys. Chem. 64, 361–386 (2013).

    Article  ADS  Google Scholar 

  9. Congreve, D. N. et al. External quantum efficiency above 100% in a singlet-exciton-fission-based organic photovoltaic cell. Science 340, 334–337 (2013).

    Article  ADS  Google Scholar 

  10. Tabachnyk, M., Ehrler, B., Bayliss, S., Friend, R. H. & Greenham, N. C. Triplet diffusion in singlet exciton fission sensitized pentacene solar cells. Appl. Phys. Lett. 103, 153302 (2013).

    Article  ADS  Google Scholar 

  11. Burdett, J. J. & Bardeen, C. J. Quantum beats in crystalline tetracene delayed fluorescence due to triplet pair coherences produced by direct singlet fission. J. Am. Chem. Soc. 134, 8597–8607 (2012).

    Article  Google Scholar 

  12. Burdett, J. J., Piland, G. B. & Bardeen, C. J. Magnetic field effects and the role of spin states in singlet fission. Chem. Phys. Lett. 585, 1–10 (2013).

    Article  ADS  Google Scholar 

  13. Wang, R. et al. Magnetic dipolar interaction between correlated triplets created by singlet fission in tetracene crystals. Nat. Commun. 6, 8602 (2015).

    Article  ADS  Google Scholar 

  14. Yarmus, L., Rosenthal, J. & Chopp, M. Epr of triplet excitions in tetracene crystals: spin polarization and the role of singlet exciton fission. Chem. Phys. Lett. 16, 477–481 (1972).

    Article  ADS  Google Scholar 

  15. Bayliss, S. L. et al. Geminate and nongeminate recombination of triplet excitons formed by singlet fission. Phys. Rev. Lett. 112, 238701 (2014).

    Article  ADS  Google Scholar 

  16. Chernick, E. T. et al. Pentacene appended to a tempo stable free radical: the effect of magnetic exchange coupling on photoexcited pentacene. J. Am. Chem. Soc. 137, 857–863 (2015).

    Article  Google Scholar 

  17. Mauck, C. M., Brown, K. E., Horwitz, N. E. & Wasielewski, M. R. Fast triplet formation via singlet exciton fission in a covalent perylenediimide-β-apocarotene dyad aggregate. J. Phys. Chem. A 119, 5587–5596 (2015).

    Article  Google Scholar 

  18. Teki, Y., Miyamoto, S., Iimura, K., Nakatsuji, M. & Miura, Y. Intramolecular spin alignment utilizing the excited molecular field between the triplet (S = 1) excited state and the dangling stable radicals (S = 1/2) as studied by time-resolved electron spin resonance: observation of the excited quartet (S = 3/2) and quintet (S = 2) states on the purely organic π-conjugated spin systems. J. Am. Chem. Soc. 122, 984–985 (2000).

    Article  Google Scholar 

  19. Murai, H., Safarik, I., Torres, M. & Strausz, O. P. Triplet ground-state benzoylphenylmethylene and its quintet ground-state triplet–triplet radical pair. J. Am. Chem. Soc. 110, 1025–1032 (1988).

    Article  Google Scholar 

  20. Odom, S. A., Parkin, S. R. & Anthony, J. E. Tetracene derivatives as potential red emitters for organic LEDs. Org. lett. 5, 4245–4248 (2003).

    Article  Google Scholar 

  21. Burdett, J. J., Gosztola, D. & Bardeen, C. J. The dependence of singlet exciton relaxation on excitation density and temperature in polycrystalline tetracene thin films: kinetic evidence for a dark intermediate state and implications for singlet fission. J. Chem. Phys. 135, 214508 (2011).

    Article  ADS  Google Scholar 

  22. Merrifield, R., Avakian, P. & Groff, R. Fission of singlet excitons into pairs of triplet excitons in tetracene crystals. Chem. Phys. Lett. 3, 386–388 (1969).

    Article  ADS  Google Scholar 

  23. Bayliss, S. L. et al. Localization length scales of triplet excitons in singlet fission materials. Phys. Rev. B 92, 115432 (2015).

    Article  ADS  Google Scholar 

  24. Stern, H. L. et al. Identification of a triplet pair intermediate in singlet exciton fission in solution. Proc. Natl Acad. Sci. USA 112, 7656–7661 (2015).

    Article  ADS  Google Scholar 

  25. Schweiger, A. & Jeschke, G. Principles of Pulse Electron Paramagnetic Resonance (Oxford University Press on Demand, 2001).

    Google Scholar 

  26. Bencini, A. & Gatteschi, D. Electron Paramagnetic Resonance of Exchange Coupled Systems (Springer Science & Business Media, 2012).

    Google Scholar 

  27. Keevers, T. & McCamey, D. Theory of triplet–triplet annihilation in optically detected magnetic resonance. Phys. Rev. B 93, 045210 (2016).

    Article  ADS  Google Scholar 

  28. Johnson, R. & Merrifield, R. Effects of magnetic fields on the mutual annihilation of triplet excitons in anthracene crystals. Phys. Rev. B 1, 896–902 (1970).

    Article  ADS  Google Scholar 

  29. Swenberg, C., Van Metter, R. & Ratner, M. Comments on exciton fission and electron spin resonance in tetracene single crystals. Chem. Phys. Lett. 16, 482–485 (1972).

    Article  ADS  Google Scholar 

  30. Budil, D. E. & Thurnauer, M. C. The chlorophyll triplet state as a probe of structure and function in photosynthesis. BBA Bioenergetics 1057, 1–41 (1991).

    Article  Google Scholar 

  31. El-Sayed, M., Leung, M. & Lin, C. Pmdr spectroscopy and the geometry of the triplet state. Chem. Phys. Lett. 14, 329–334 (1972).

    Article  ADS  Google Scholar 

  32. Kraffert, F. et al. Charge separation in PCPDTBT:PCBM blends from an EPR perspective. J. Phys. Chem. C 118, 28482–28493 (2014).

    Article  Google Scholar 

  33. Wilson, J. S. et al. The energy gap law for triplet states in Pt-containing conjugated polymers and monomers. J. Am. Chem. Soc. 123, 9412–9417 (2001).

    Article  Google Scholar 

  34. Astashkin, A. & Schweiger, A. Electron-spin transient nutation: a new approach to simplify the interpretation of esr spectra. Chem. Phys. Lett. 174, 595–602 (1990).

    Article  ADS  Google Scholar 

  35. Hahn, E. L. Spin echoes. Phys. Rev. 80, 580–594 (1950).

    Article  ADS  Google Scholar 

  36. Baker, W., Keevers, T., Lupton, J. M., McCamey, D. & Boehme, C. Slow hopping and spin dephasing of coulombically bound polaron pairs in an organic semiconductor at room temperature. Phys. Rev. Lett. 108, 267601 (2012).

    Article  ADS  Google Scholar 

  37. Rondin, L. et al. Magnetometry with nitrogen-vacancy defects in diamond. Rep. Prog. Phys. 77, 056503 (2014).

    Article  ADS  Google Scholar 

  38. McLauchlan, K. A. & Steiner, U. Invited article: the spin-correlated radical pair as a reaction intermediate. Mol. Phys. 73, 241–263 (1991).

    Article  ADS  Google Scholar 

  39. Deigen, M. & Pekar, S. Hyperfine interactions and spin-electron resonance in polarons and excitons. Sov. Phys. JETP 34, 471–473 (1958).

    Google Scholar 

  40. Sternlicht, H. & McConnell, H. M. Paramagnetic excitons in molecular crystals. J. Chem. Phys. 35, 1793–1800 (1961).

    Article  ADS  Google Scholar 

  41. Bayliss, S. L. et al. Spin signatures of exchange-coupled triplet pairs formed by singlet fission. Phys. Rev. B 94, 045204 (2016).

    Article  ADS  Google Scholar 

  42. Wakasa, M. et al. What can be learned from magnetic field effects on singlet fission: role of exchange interaction in excited triplet pairs. J. Phys. Chem. C 119, 25840–25844 (2015).

    Article  Google Scholar 

  43. Steiner, U. E. & Ulrich, T. Magnetic field effects in chemical kinetics and related phenomena. Chem. Rev. 89, 51–147 (1989).

    Article  Google Scholar 

  44. Dick, B. & Nickel, B. Accessibility of the lowest quintet state of organic molecules through triplet–triplet annihilation; an indo ci study. Chem. Phys. 78, 1–16 (1983).

    Article  Google Scholar 

  45. Singh-Rachford, T. N. & Castellano, F. N. Photon upconversion based on sensitized triplet–triplet annihilation. Coord. Chem. Rev. 254, 2560–2573 (2010).

    Article  Google Scholar 

  46. Kondakov, D., Pawlik, T., Hatwar, T. & Spindler, J. Triplet annihilation exceeding spin statistical limit in highly efficient fluorescent organic light-emitting diodes. J. Appl. Phys. 106, 124510 (2009).

    Article  ADS  Google Scholar 

  47. Baldo, M. A., Adachi, C. & Forrest, S. R. Transient analysis of organic electrophosphorescence. II transient analysis of triplet–triplet annihilation. Phys. Rev. B 62, 10967–10977 (2000).

    Article  ADS  Google Scholar 

  48. Reineke, S., Schwartz, G., Walzer, K. & Leo, K. Reduced efficiency roll-off in phosphorescent organic light emitting diodes by suppression of triplet–triplet annihilation. Appl. Phys. Lett. 91, 123508 (2007).

    Article  ADS  Google Scholar 

  49. Thompson, N. J. et al. Energy harvesting of non-emissive triplet excitons in tetracene by emissive PbS nanocrystals. Nat. Mater. 13, 1039–1043 (2014).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

L.R.W. thanks the Gates-Cambridge Trust and Winton Programme for the Physics of Sustainability. This work was supported by the Freie Universität Berlin within the Excellence Initiative of the German Research Foundation. We also acknowledge support from the Engineering and Physical Sciences Research Council Grants No. EP/G060738/1. We thank A. D. Chepelianskii for helpful input.

Author information

Authors and Affiliations

Authors

Contributions

L.R.W. and S.L.B. analysed the data. F.K., J.B., L.R.W. and S.L.B. carried out the experiments. K.J.T. and J.E.A. provided the materials. All authors discussed the results. L.R.W. and S.L.B. wrote the manuscript with input from all authors.

Corresponding authors

Correspondence to John E. Anthony, Neil C. Greenham or Jan Behrends.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 586 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weiss, L., Bayliss, S., Kraffert, F. et al. Strongly exchange-coupled triplet pairs in an organic semiconductor. Nature Phys 13, 176–181 (2017). https://doi.org/10.1038/nphys3908

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys3908

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing