Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Focusing capillary jets close to the continuum limit

Abstract

The demand for techniques that can reliably deliver and control nanometre-scale volumes of liquid is a growing priority in biotechnology and medicine. Capillary jets are capable of supplying a steady stream of monodisperse liquid droplets. But because of the increasing forces and pressures needed to counteract surface tension for droplets of decreasing size, reaching the nanoscale with such an approach is difficult. One way of overcoming such limitations is to electrostatically focus a jet as it emerges from a capillary. Another, which we report here, is to focus such a jet by hydrodynamic means, a double flow-focusing arrangement that involves a manifold capillary that delivers a second immiscible fluid jet that envelopes and guides the jet from an inner capillary. Under the appropriate working conditions, this enables the generation of continuous steady capillary fluid jets down to submicrometre diameter—approaching the ultimate continuum limit, which is supported by a proposed theory.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The double fluidic focusing arrangement.
Figure 2: Pictures of the different fluid combinations used.
Figure 3: Pilot Ink droplets dispersed in SOII by co-flow focusing.
Figure 4: Photographs of mercury droplets obtained using a mercury–silicon oil II–air combination at different experimental conditions.
Figure 5: Plot of the jetting–dripping transition location in the capillary number–viscosity ratio plane.

Similar content being viewed by others

References

  1. Whitesides, G. M. Nanoscience, nanotechnology, and chemistry. Small 1, 176–179 (2005).

    Article  Google Scholar 

  2. Gates, B. D., Xu, Q. B., Love, J. C., Wolfe, D. B. & Whitesides, G. M. Unconventional nanofabrication. Annu. Rev. Mater. Res. 34, 339–372 (2004).

    Article  ADS  Google Scholar 

  3. Stone, H. A. Dynamics of drop deformation and breakup in viscous fluids. Annu. Rev. Fluid Mech. 26, 65–102 (1994).

    Article  ADS  MathSciNet  Google Scholar 

  4. Eggers, J. Nonlinear dynamics and breakup of free-surface flows. Rev. Mod. Phys. 69, 865–929 (1997).

    Article  ADS  Google Scholar 

  5. Gañán-Calvo, A. M. Generation of steady liquid microthreads and micron-sized monodisperse sprays in gas streams. Phys. Rev. Lett. 80, 285–288 (1998).

    Article  ADS  Google Scholar 

  6. Xu, S. et al. Generation of monodisperse particles by using microfluidics: Control over size, shape, and composition. Angew. Chem. Int. Edn 44, 724–728 (2005).

    Article  Google Scholar 

  7. Suryo, R. & Basaran, O. A. Tip streaming from a liquid drop forming from a tube in a co-flowing outer fluid. Phys. Fluids 18, 082102 (2006).

    Article  ADS  Google Scholar 

  8. Taylor, G. I. The formation of emulsions in definable fields of flow. Proc. R. Soc. Lond. A 146, 501 (1934).

    Article  ADS  Google Scholar 

  9. Zhang, W. W. Viscous entrainment from a nozzle: Singular liquid spouts. Phys. Rev. Lett. 93, 184502 (2004).

    Article  ADS  Google Scholar 

  10. Gañán-Calvo, A. M. & Gordillo, J. M. Perfectly monodisperse microbubbling by capillary flow focusing. Phys. Rev. Lett. 87, 274501 (2001).

    Article  Google Scholar 

  11. Anna, S. L., Bontoux, N. & Stone, H. A. Formation of dispersions using flow focusing in microchannels. Appl. Phys. Lett. 82, 364–366 (2003).

    Article  ADS  Google Scholar 

  12. Garstecki, P. et al. Formation of monodisperse bubbles in a microfluidic flow-focusing device. Appl. Phys. Lett. 85, 2649–2651 (2004).

    Article  ADS  Google Scholar 

  13. Garstecki, P., Stone, H. A. & Whitesides, G. M. Mechanism for flow-rate controlled breakup in confined geometries: A route to monodisperse emulsions. Phys. Rev. Lett. 94, 164501 (2005).

    Article  ADS  Google Scholar 

  14. Takeuchi, S., Garstecki, P., Weibel, D. B. & Whitesides, G. M. An axisymmetric flow-focusing microfluidic device. Adv. Mater. 17, 1067–1072 (2005).

    Article  Google Scholar 

  15. Yobas, L., Martens, S., Ong, W. L. & Ranganathan, N. High-performance flow-focusing geometry for spontaneous generation of monodispersed droplets. Lab Chip. 6, 1073–1079 (2006).

    Article  Google Scholar 

  16. Martín-Banderas, L. et al. Flow focusing: A versatile technology to produce size-controlled and specific-morphology microparticles. Small 1, 688–692 (2005).

    Article  Google Scholar 

  17. Martín-Banderas, L. et al. Towards a high throughput production of uniform encoded microparticles. Adv. Mater. 18, 559–564 (2006).

    Article  Google Scholar 

  18. Walzel, P. & Schaldach, G. Herstellen feinteiliger emulsionen in viskosen flüssigkeiten. Chem. Ing. Technol. 78, 759–764 (2006).

    Article  Google Scholar 

  19. Gañán-Calvo, A. M. & Riesco-Chueca, P. Jetting–dripping transition of a liquid jet in a lower viscosity co-flowing immiscible liquid: The minimum flow rate in flow focusing. J. Fluid Mech. 553, 75–84 (2006).

    Article  ADS  Google Scholar 

  20. Rosi, N. L. & Mirkin, C. A. Nanostructures in biodiagnostics. Chem. Rev. 105, 1547–1562 (2005).

    Article  Google Scholar 

  21. Sherwood, J. D. Tip streaming from slender drops in a nonlinear extensional flow. J. Fluid Mech. 144, 281–293 (1984).

    Article  ADS  Google Scholar 

  22. Eggleton, C. D., Tsai, T.-M. & Stebe, K. J. Tip streaming from a drop in the presence of surfactants. Phys. Rev. Lett. 87, 048302 (2001).

    Article  ADS  Google Scholar 

  23. Berkland, C., Pollauf, E., Packa, D. W. & Kim, K. Uniform double-walled polymer microspheres of controllable shell thickness. J. Control. Release 96, 101–111 (2004).

    Article  Google Scholar 

  24. Bocanegra, R., Sampedro, J. L., Gañán-Calvo, A. M. & Marquez, M. Monodisperse structured multi-vesicle microencapsulation using flow-focusing and controlled disturbance. J. Microencapsul. 22, 745–759 (2005).

    Article  Google Scholar 

  25. Utada, A. S. et al. Monodisperse double emulsions generated from a microcapillary device. Science 308, 537–541 (2005).

    Article  ADS  Google Scholar 

  26. Lin, S. P. & Lian, Z. W. Absolute and convective instability of a viscous liquid jet surrounded by a viscous gas in a vertical pipe. Phys. Fluids A 5, 771–773 (1993).

    Article  ADS  Google Scholar 

  27. Gordillo, J. M., Pérez-Saborid, M. & Gañán-Calvo, A. M. Linear stability of co-flowing liquid-gas jets. J. Fluid Mech. 448, 23–51 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  28. Lin, S. P. Breakup of Liquid Sheets and Jets (Cambridge Univ. Press, Cambridge, 2003).

    Book  Google Scholar 

  29. Funada, T., Joseph, D. D. & Yamashita, S. Stability of a liquid jet into incompressible gases and liquids. Int. J. Multiphase Flow 30, 1279–1310 (2004).

    Article  Google Scholar 

  30. Sevilla, A., Gordillo, J. M. & Martinez-Bazan, C. Transition from bubbling to jetting in a coaxial air–water jet. Phys. Fluids 17, 018105 (2005).

    Article  ADS  Google Scholar 

  31. Marín, A. G., Loscertales, I. G., Marquez, M. & Barrero, A. Simple and double emulsions via coaxial jet electrosprays. Phys. Rev. Lett. 98, 014502 (2007).

    Article  ADS  Google Scholar 

  32. Gañán-Calvo, A. M. Electro flow focusing: The high conductivity, low viscosity limit. Phys. Rev. Lett. 98, 134503 (2007).

    Article  ADS  Google Scholar 

  33. Ambravaneswaran, B., Subramani, H. J., Phillips, S. D. & Basaran, O. A. Dripping–jetting transitions in a dripping faucet. Phys. Rev. Lett. 93, 034501 (2004).

    Article  ADS  Google Scholar 

  34. O’Donnell, B., Chen, J. N. & Lin, S. P. Transition from convective to absolute instability in a liquid jet. Phys. Fluids 13, 2732–2734 (2001).

    Article  ADS  Google Scholar 

  35. Gañán-Calvo, A. M., Herrada, M. A. & Garstecki, P. Bubbling in unbounded coflowing liquids. Phys. Rev. Lett. 96, 124504 (2006).

    Article  ADS  Google Scholar 

  36. Gañán-Calvo, A. M. Absolute instability of a viscous hollow jet. Phys. Rev. E 75, 027301 (2007).

    Article  ADS  Google Scholar 

  37. Leib, S. J. & Goldstein, M. E. Convective and absolute instability of a viscous liquid jet. Phys. Fluids 29, 952–954 (1986).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Ministry of Education and Science, Project no. DPI2004-07197, and by the Junta de Andalucía, Excellence Project no. TEP 1190.

Author information

Authors and Affiliations

Authors

Contributions

A.M.G.C.: project planning, experimental work, data analysis, theoretical work, article writing; R.G.P.: experimental work, data analysis; P.R.C.: theoretical work, article writing; M.A.H.: numerical work; M.F.M.: project planning.

Corresponding author

Correspondence to Alfonso M. Gañán-Calvo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gañán-Calvo, A., González-Prieto, R., Riesco-Chueca, P. et al. Focusing capillary jets close to the continuum limit. Nature Phys 3, 737–742 (2007). https://doi.org/10.1038/nphys710

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys710

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing