Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

A computational method of prediction of the end-diastolic pressure–volume relationship by single beat

Abstract

The end-diastolic pressure–volume relation (EDPVR) is an important descriptor of passive cardiac pump properties. However, clinical utility has been limited by the need for measurement of pressures and volumes over relatively large ranges. In this protocol, we describe an algorithm to estimate the entire EDPVR in humans from a single measured pressure–volume (P–V) point. This algorithm was developed from observations made from accurately measured EDPVRs of human hearts, which indicated that when normalized by appropriate left ventricular volume scaling (to arrive at volume-normalized EDPVRs, EDPVRn) EDPVRns were nearly identical in all patients. In this protocol, we demonstrate how to use EDPVRns to predict a second P–V point on the EDPVR, in which case the entire EDPVR can then be predicted. With recent advances for accurate noninvasive measurement of end-diastolic pressure and volumes, this protocol permits the assessment of passive properties in a broader range of research and clinical settings.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Examples of end-diastolic pressure–volume relations (EDPVRs).
Figure 2: The same end-diastolic pressure–volume relations (EDPVRs) from Figure 1 normalized to volume and superimposed on each other.
Figure 3: All ex vivo human volume-normalized end-diastolic pressure–volume relation (EDPVR) data shown superimposed on each other revealing an An value of 27.78 and a Bn value of 2.76.
Figure 4: V0 measured from human hearts as a function of volume.
Figure 5
Figure 6: Correlation plots of the agreement between measured and predicted V30.
Figure 7: Two examples of the single-beat estimation of the entire end-diastolic pressure–volume relation (EDPVR).

Similar content being viewed by others

References

  1. Jacob, R. & Kissling, G. Ventricular pressure-volume relations as the primary basis for evaluation of cardiac mechanics. Return to Frank's diagram. Basic Res. Cardiol. 84, 227–246 (1989).

    Article  CAS  PubMed  Google Scholar 

  2. Sagawa, K. The end-systolic pressure-volume relation of the ventricle: definition, modifications and clinical use. Circulation 63, 1223–1227 (1981).

    Article  CAS  PubMed  Google Scholar 

  3. Kass, D.A. et al. Reverse remodeling from cardiomyoplasty in human heart failure. External constraint versus active assist. Circulation 91, 2314–2318 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Klotz, S. et al. Mechanical unloading during left ventricular assist device support increases left ventricular collagen cross-linking and myocardial stiffness. Circulation 112, 364–374 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Pouleur, H. et al. Effects of long-term enalapril therapy on left ventricular diastolic properties in patients with depressed ejection fraction. SOLVD Investigators. Circulation 88, 481–491 (1993).

    Article  CAS  PubMed  Google Scholar 

  6. Royse, C.F. & Royse, A.G. The myocardial and vascular effects of bupivacaine, levobupivacaine, and ropivacaine using pressure volume loops. Anesth. Analg. 101, 679–687 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Burkhoff, D., Yue, D.T., Franz, M.R., Hunter, W.C. & Saqawa, K. Mechanical restitution of isolated perfused canine left ventricles. Am. J. Physiol. 246, H8–H16 (1984).

    CAS  PubMed  Google Scholar 

  8. Grieve, D.J., Cave, A.C., Byrne, J.A., Layland, J. & Shah, A.M. Analysis of ex vivo left ventricular pressure-volume relations in the isolated murine ejecting heart. Exp. Physiol. 89, 573–582 (2004).

    Article  PubMed  Google Scholar 

  9. Regen, D.M., Denton, P.K., Howe, W.C., Taylor, L.K. & Hansen, D.E. Characteristics of left-ventricular isovolumic pressure waves in isolated dog hearts. Heart Vessels 9, 155–166 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. Baan, J. et al. Continuous measurement of left ventricular volume in animals and humans by conductance catheter. Circulation 70, 812–823 (1984).

    Article  CAS  PubMed  Google Scholar 

  11. Little, W.C., Ohno, M., Kitzman, D.W., Thomas, J.D. & Cheng, C.P. Determination of left ventricular chamber stiffness from the time for deceleration of early left ventricular filling. Circulation 92, 1933–1939 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Cecconi, M. et al. Doppler echocardiographic evaluation of left ventricular end-diastolic pressure in patients with coronary artery disease. J. Am. Soc. Echocardiogr. 9, 241–250 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Garcia, M.J. et al. An index of early left ventricular filling that combined with pulsed Doppler peak E velocity may estimate capillary wedge pressure. J. Am. Coll. Cardiol. 29, 448–454 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Nagueh, S.F. et al. Doppler estimation of left ventricular filling pressures in patients with hypertrophic cardiomyopathy. Circulation 99, 254–261 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Neumann, A., Soble, J.S., Anagnos, P.C., Kagzi, M. & Parrillo, J.E. Accurate noninvasive estimation of left ventricular end-diastolic pressure: comparison with catheterization. J. Am. Soc. Echocardiogr. 11, 126–131 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Bohn, J., Rienmüller, R., Seiderer, M. & Strauer, B.E. [Non-invasive determination of the enddiastolic volume of the left ventricle. A comparative angiocardiographic, two-dimensional echocardiographic, computer tomographic and radionuclide ventriculographic study]. Z. Kardiol. 72, 438–447 (1983).

    CAS  PubMed  Google Scholar 

  17. Thomsen, J.H. et al. Estimation of absolute left ventricular volume from gated radionuclide ventriculograms. A method using phase image assisted automated edge detection and two-dimensional echocardiography. Chest 84, 6–13 (1983).

    Article  CAS  PubMed  Google Scholar 

  18. Ichikawa, Y. et al. Evaluation of left ventricular volumes and ejection fraction using fast steady-state cine MR imaging: comparison with left ventricular angiography. J. Cardiovasc. Magn. Reson. 5, 333–342 (2003).

    Article  PubMed  Google Scholar 

  19. Chen, C.H. et al. Noninvasive single-beat determination of left ventricular end-systolic elastance in humans. J. Am. Coll. Cardiol. 38, 2028–2034 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Senzaki, H., Chen, C.H. & Kass, D.A. Single-beat estimation of end-systolic pressure-volume relation in humans. A new method with the potential for noninvasive application. Circulation 94, 2497–2506 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Shishido, T. et al. Single-beat estimation of end-systolic elastance using bilinearly approximated time-varying elastance curve. Circulation 102, 1983–1989 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Klotz, S. et al. Single-beat estimation of end-diastolic pressure-volume relationship: a novel method with potential for noninvasive application. Am. J. Physiol. Heart Circ. Physiol. 291, H403–H412 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Mirsky, I. Assessment of passive elastic stiffness of cardiac muscle: mathematical concepts, physiologic and clinical considerations, directions of future research. Prog. Cardiovasc. Dis. 18, 277–308 (1976).

    Article  CAS  PubMed  Google Scholar 

  24. Todaka, K. et al. Impact of exercise training on ventricular properties in a canine model of congestive heart failure. Am. J. Physiol. 272, H1382–1390 (1997).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Klotz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Tutorial

Complete algorithm (XLS 25 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klotz, S., Dickstein, M. & Burkhoff, D. A computational method of prediction of the end-diastolic pressure–volume relationship by single beat. Nat Protoc 2, 2152–2158 (2007). https://doi.org/10.1038/nprot.2007.270

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2007.270

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing