Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Practical guidelines for dual-color fluorescence cross-correlation spectroscopy

Abstract

Dual-color fluorescence cross-correlation spectroscopy (FCCS) allows for the determination of molecular mobility and concentrations and for the quantitative analysis of molecular interactions such as binding or cleavage at very low concentrations. This protocol discusses considerations for preparing a biological system for FCCS experiments and offers practical advice for performing FCCS on a commercially available setup. Although FCCS is closely related to two-color confocal microscopy, critical adjustments and test measurements are necessary to establish successful FCCS measurements, which are described in a step-by-step manner. Moreover, we discuss control experiments for a negative cross-correlation artifact, arising from a lack of detection volume overlap, and a positive artifact, arising from cross-talk. FCCS has been applied to follow molecular interactions in solutions, on membranes and in cells and to analyze dynamic colocalization during intracellular transport. It is a technique that is expected to see new applications in various fields of biochemical and cell biological research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: FCCS setup.
Figure 2: The importance of axial detection volume overlap.
Figure 3: Applying FCCS to protein–protein interactions in solution.
Figure 4: Applying FCCS to intracellular cargo transport.

Similar content being viewed by others

References

  1. Bacia, K., Kim, S.A. & Schwille, P. Fluorescence cross-correlation spectroscopy in living cells. Nat. Methods 3, 83–89 (2006).

    Article  CAS  Google Scholar 

  2. Larson, D.R., Gosse, J.A., Holowka, D.A., Baird, B.A. & Webb, W.W. Temporally resolved interactions between antigen-stimulated IgE receptors and Lyn kinase on living cells. J. Cell Biol. 171, 527–536 (2005).

    Article  CAS  Google Scholar 

  3. Liu, P. et al. Investigation of the dimerization of proteins from the epidermal growth factor receptor family by single wavelength fluorescence cross-correlation spectroscopy. Biophys. J. 93, 684–698 (2007).

    Article  CAS  Google Scholar 

  4. Kim, S.A., Heinze, K.G. & Schwille, P. Fluorescence correlation spectroscopy in living cells. Nat. Methods 4 (11), 963–973 (2007).

    Article  CAS  Google Scholar 

  5. Schwille, P., Meyer-Almes, F.J. & Rigler, R. Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional analysis in solution. Biophys. J. 72, 1878–1886 (1997).

    Article  CAS  Google Scholar 

  6. Kim, S.A., Heinze, K.G., Bacia, K., Waxham, M.N. & Schwille, P. Two-photon cross-correlation analysis of intracellular reactions with variable stoichiometry. Biophys. J. 88, 4319–4336 (2005).

    Article  CAS  Google Scholar 

  7. Hwang, L.C. & Wohland, T. Dual-color fluorescence cross-correlation spectroscopy using single laser wavelength excitation. ChemPhysChem 5, 549–551 (2004).

    Article  CAS  Google Scholar 

  8. Jankowski, T. & Janka, R. ConfoCor2. The second generation of fluorescence correlation microscopes. in Fluorescence Correlation Spectroscopy: Theory and Applications (eds. Rigler, R. & Elson, E.L.) 331–345 (Springer, Berlin, 2001).

    Chapter  Google Scholar 

  9. Weisshart, K., Jungel, V. & Briddon, S.J. The LSM 510 Meta-ConfoCor2 system: an integrated imaging and spectroscopic platform for single-molecule detection. Curr. Pharm. Biotechnol. 5, 135–154 (2004).

    Article  CAS  Google Scholar 

  10. Sengupta, P., Balaji, J. & Maiti, S. Measuring diffusion in cell membranes by fluorescence correlation spectroscopy. Methods 27, 374–387 (2002).

    Article  CAS  Google Scholar 

  11. Pan, X. et al. Multifunctional fluorescence correlation microscope for intracellular and microfluidic measurements. Rev. Sci. Instrum. 78, 053711 (2007).

    Article  Google Scholar 

  12. Hess, S.T. & Webb, W.W. Focal volume optics and experimental artifacts in confocal fluorescence correlation spectroscopy. Biophys. J. 83, 2300–2317 (2002).

    Article  CAS  Google Scholar 

  13. Petrov, E. & Schwille, P. State of the art and novel trends in fluorescence correlation spectroscopy. in Standardization in Fluorometry: State of the Art and Future Challenges (ed. Resch-Genger, U.) (Springer, Berlin, in the press).

  14. Nagy, A., Wu, J. & Berland, K.M. Characterizing observation volumes and the role of excitation saturation in one-photon fluorescence fluctuation spectroscopy. J. Biomed. Opt. 10, 44015 (2005).

    Article  Google Scholar 

  15. Gregor, I., Patra, D. & Enderlein, J. Optical saturation in fluorescence correlation spectroscopy under continuous-wave and pulsed excitation. ChemPhysChem 6, 164–170 (2005).

    Article  CAS  Google Scholar 

  16. Enderlein, J., Gregor, I., Patra, D. & Fitter, J. Art and artefacts of fluorescence correlation spectroscopy. Curr. Pharm. Biotechnol. 5, 155–161 (2004).

    Article  CAS  Google Scholar 

  17. Koppel, D.E. Statistical accuracy in fluorescence correlation spectroscopy. Phys. Rev. A Gen. Phys. 10, 1938–1945 (1974).

    Article  Google Scholar 

  18. Saffarian, S. & Elson, E.L. Statistical analysis of fluorescence correlation spectroscopy: the standard deviation and bias. Biophys. J. 84, 2030–2042 (2003).

    Article  CAS  Google Scholar 

  19. Chen, Y., Muller, J.D., So, P.T. & Gratton, E. The photon counting histogram in fluorescence fluctuation spectroscopy. Biophys. J. 77, 553–567 (1999).

    Article  CAS  Google Scholar 

  20. Kask, P., Palo, K., Ullmann, D. & Gall, K. Fluorescence-intensity distribution analysis and its application in biomolecular detection technology. Proc. Natl. Acad. Sci. USA 96, 13756–13761 (1999).

    Article  CAS  Google Scholar 

  21. Saffarian, S., Li, Y., Elson, E.L. & Pike, L.J. Oligomerization of the EGF receptor investigated by live cell fluorescence intensity distribution analysis. Biophys. J. 93, 1021–1031 (2007).

    Article  CAS  Google Scholar 

  22. Hillesheim, L.N., Chen, Y. & Muller, J.D. Dual-color photon counting histogram analysis of mRFP1 and EGFP in living cells. Biophys. J. 91, 4273–4284 (2006).

    Article  CAS  Google Scholar 

  23. Kask, P. et al. Two-dimensional fluorescence intensity distribution analysis: theory and applications. Biophys. J. 78, 1703–1713 (2000).

    Article  CAS  Google Scholar 

  24. Rigler, R. & Elson, E.L. Fluorescence Correlation Spectroscopy: Theory and Applications (Springer, Berlin, 2001).

    Book  Google Scholar 

  25. Haustein, E. & Schwille, P. Ultrasensitive investigations of biological systems by fluorescence correlation spectroscopy. Methods 29, 153–166 (2003).

    Article  CAS  Google Scholar 

  26. Muller, J.D., Chen, Y. & Gratton, E. Fluorescence correlation spectroscopy. Methods Enzymol. 361, 69–92 (2003).

    Article  CAS  Google Scholar 

  27. Bacia, K. & Schwille, P. A dynamic view of cellular processes by in vivo fluorescence auto- and cross-correlation spectroscopy. Methods 29, 74–85 (2003).

    Article  CAS  Google Scholar 

  28. Krichevsky, O. & Bonnet, G. Fluorescence correlation spectroscopy: the technique and its applications. Rep. Prog. Phys. 65, 251–297 (2002).

    Article  CAS  Google Scholar 

  29. Hess, S.T., Huang, S., Heikal, A.A. & Webb, W.W. Biological and chemical applications of fluorescence correlation spectroscopy: a review. Biochemistry 41, 697–705 (2002).

    Article  CAS  Google Scholar 

  30. Thompson, N.L. & Steele, B.L. Total internal reflection with fluorescence correlation spectroscopy. Nat. Protoc. 2, 878–890 (2007).

    Article  CAS  Google Scholar 

  31. Stoevesandt, O. & Brock, R. One-step analysis of protein complexes in microliters of cell lysate using indirect immunolabeling & fluorescence cross-correlation spectroscopy. Nat. Protoc. 1, 223–229 (2006).

    Article  CAS  Google Scholar 

  32. Nishimura, G. & Kinjo, M. Systematic error in fluorescence correlation measurements identified by a simple saturation model of fluorescence. Anal. Chem. 76, 1963–1970 (2004).

    Article  CAS  Google Scholar 

  33. Shaner, N.C., Steinbach, P.A. & Tsien, R.Y. A guide to choosing fluorescent proteins. Nat. Methods 2, 905–909 (2005).

    Article  CAS  Google Scholar 

  34. Kohl, T., Heinze, K.G., Kuhlemann, R., Koltermann, A. & Schwille, P. A protease assay for two-photon crosscorrelation and FRET analysis based solely on fluorescent proteins. Proc. Natl. Acad. Sci. USA 99, 12161–12166 (2002).

    Article  CAS  Google Scholar 

  35. Kogure, T. et al. A fluorescent variant of a protein from the stony coral Montipora facilitates dual-color single-laser fluorescence cross-correlation spectroscopy. Nat. Biotechnol. 24, 577–581 (2006).

    Article  CAS  Google Scholar 

  36. Muller, B.K., Zaychikov, E., Brauchle, C. & Lamb, D.C. Pulsed interleaved excitation. Biophys. J. 89, 3508–3522 (2005).

    Article  Google Scholar 

  37. Thews, E. et al. Cross talk free fluorescence cross-correlation spectroscopy in live cells. Biophys. J. 89, 2069–2076 (2005).

    Article  CAS  Google Scholar 

  38. Baudendistel, N., Muller, G., Waldeck, W., Angel, P. & Langowski, J. Two-hybrid fluorescence cross-correlation spectroscopy detects protein–protein interactions in vivo. ChemPhysChem 6, 984–990 (2005).

    Article  CAS  Google Scholar 

  39. Kohl, T., Haustein, E. & Schwille, P. Determining protease activity in vivo by fluorescence cross-correlation analysis. Biophys. J. 89, 2770–2782 (2005).

    Article  CAS  Google Scholar 

  40. Kim, S.A., Heinze, K.G., Waxham, M.N. & Schwille, P. Intracellular calmodulin availability accessed with two-photon cross-correlation. Proc. Natl. Acad. Sci. USA 101, 105–110 (2004).

    Article  CAS  Google Scholar 

  41. Kettling, U., Koltermann, A., Schwille, P. & Eigen, M. Real-time enzyme kinetics monitored by dual-color fluorescence cross-correlation spectroscopy. Proc. Natl. Acad. Sci. USA 95, 1416–1420 (1998).

    Article  CAS  Google Scholar 

  42. Ohrt, T., Merkle, D., Birkenfeld, K., Echeverri, C.J. & Schwille, P. In situ fluorescence analysis demonstrates active siRNA exclusion from the nucleus by Exportin 5. Nucleic Acids Res. 34, 1369–1380 (2006).

    Article  CAS  Google Scholar 

  43. Wohland, T., Friedrich, K., Hovius, R. & Vogel, H. Study of ligand-receptor interactions by fluorescence correlation spectroscopy with different fluorophores: evidence that the homopentameric 5-hydroxytryptamine type 3As receptor binds only one ligand. Biochemistry 38, 8671–8681 (1999).

    Article  CAS  Google Scholar 

  44. Culbertson, C.T., Jacobson, S.C. & Ramsey, J.M. Diffusion coefficient measurements in microfluidic devices. Talanta 56, 365–373 (2002).

    Article  CAS  Google Scholar 

  45. Petrov, E.P., Ohrt, T., Winkler, R.G. & Schwille, P. Diffusion and segmental dynamics of double-stranded DNA. Phys. Rev. Lett. 97, 258101 (2006).

    Article  CAS  Google Scholar 

  46. Widengren, J. & Schwille, P. Characterization of photoinduced isomerization and back-isomerization of the cyanine dye Cy5 by fluorescence correlation spectroscopy. J. Phys. Chem. 104, 6416–6428 (2000).

    Article  CAS  Google Scholar 

  47. Bacia, K., Majoul, I.V. & Schwille, P. Probing the endocytic pathway in live cells using dual-color fluorescence cross-correlation analysis. Biophys. J. 83, 1184–1193 (2002).

    Article  CAS  Google Scholar 

  48. Weidemann, T., Wachsmuth, M., Tewes, M., Rippe, K. & Langowski, J. Analysis of ligand binding by two-colour fluorescence cross-correlation spectroscopy. Single Mol. 3, 49–61 (2002).

    Article  CAS  Google Scholar 

  49. Bacia, K. & Schwille, P. Fluorescence correlation spectroscopy. in Lipid rafts (ed. McIntosh, T.J.) Chapter 7, 73–84 (Humana Press/Springer, Berlin; 2007).

    Chapter  Google Scholar 

  50. Bacia, K., Schuette, C.G., Kahya, N., Jahn, R. & Schwille, P. SNAREs prefer liquid-disordered over 'raft' (liquid-ordered) domains when reconstituted into giant unilamellar vesicles. J. Biol. Chem. 279, 37951–37955 (2004).

    Article  CAS  Google Scholar 

  51. Becker, C.F. et al. C-terminal fluorescence labeling of proteins for interaction studies on the single-molecule level. ChemBioChem 7, 891–895 (2006).

    Article  CAS  Google Scholar 

  52. Ricka, J. & Binkert, Th. Direct measurement of a distinct correlation function by fluorescence cross correlation. Phys. Rev. A 39, 2646–2652 (1989).

    Article  CAS  Google Scholar 

  53. Davis, L.M., Williams, P.E., Ball, D.A., Swift, K.M. & Matayoshi, E.D. Data reduction methods for application of fluorescence correlation spectroscopy to pharmaceutical drug discovery. Curr. Pharm. Biotechnol. 4, 451–462 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Sally A. Kim for critical reading of the manuscript, Elke Haustein and Jonas Ries for helpful comments and former and current members of the Schwille lab for materials and discussions. This work was supported by the Volkswagen foundation, the German Ministry of Education and Research, the Human Frontiers Science Program and the European Regional Development Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petra Schwille.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bacia, K., Schwille, P. Practical guidelines for dual-color fluorescence cross-correlation spectroscopy. Nat Protoc 2, 2842–2856 (2007). https://doi.org/10.1038/nprot.2007.410

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2007.410

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing