Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Methods for isolation of marine-derived endophytic fungi and their bioactive secondary products

Abstract

Marine-derived fungi have been shown in recent years to produce a plethora of new bioactive secondary metabolites, some of them featuring new carbon frameworks hitherto unprecedented in nature. These compounds are of interest as new lead structures for medicine as well as for plant protection. The aim of this protocol is to give a detailed description of methods useful for the isolation and cultivation of fungi associated with various marine organisms (sponges, algae and mangrove plants) for the extraction, characterization and structure elucidation of biologically active secondary metabolites produced by these marine-derived endophytic fungi, and for the preliminary evaluation of their pharmacological properties based on rapid 'in house' screening systems. Some results exemplifying the positive outcomes of the protocol are given at the end. From sampling in marine environment to completion of the structure elucidation and bioactivity screening, a period of at least 3 months has to be scheduled.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Grove, J.F., MacMillan, J., Mulholland, T.P.C. & Rogers, M.A.T. Griseofulvin part I. J. Chem. Soc. 3949–3958 (1952).

  2. Butler, M.S. The role of natural product chemistry in drug discovery. J. Nat. Prod. 67, 2141–2153 (2004).

    Article  CAS  Google Scholar 

  3. Abramovits, W., Gupta, A. & Gover, M. Altabax (retapamulin ointment), 1%. Skinmed 6, 239–240 (2007).

    Article  Google Scholar 

  4. Dewick, P.M. Makrolides and polyethers. in Medicinal Natural Products. A Biosynthetic Approach (John Wiley & Sons Ltd., Chichester, UK, 2006).

  5. Balba, H. Review of strobilurine fungicide chemicals. J. Environ. Sci. Health B. 42, 441–445 (2007).

    Article  CAS  Google Scholar 

  6. Bugni, T.S. & Ireland, C.M. Marine-derived fungi: a chemically and biologically diverse group of micro-organisms review. Nat. Prod. Rep. 21, 143–163 (2004).

    Article  CAS  Google Scholar 

  7. König, G.M. et al. Natural products from marine organisms and their associated microbes. Chembiochem 7, 229–238 (2006).

    Article  Google Scholar 

  8. Kohlmeyer, J. & Kohlmeyer, E. in Marine Mycology, the higher fungi (Academic Press, New York, San Francisco, London, 1979).

  9. Schulz, B. In Bioactive Fungal Metabolites–Impact and Exploitation, 20 (British Mycological Society, International Symposium Proceedings: University of Wales, Swansea, UK, 2001).

  10. Baker, D. & Alvi, K. Small-molecule natural products: new structures, new activities. Curr. Opin. Biotechnol. 15, 576–583 (2004).

    Article  CAS  Google Scholar 

  11. Pietra, F. Secondary metabolites from marine microorganisms: bacteria, protozoa, algae and fungi. Achievements and prospects. Nat. Prod. Rep. 14, 453–464 (1997).

    Article  CAS  Google Scholar 

  12. Blunt, J.W. et al. Marine natural products. Nat. Prod. Rep. 25, 35–94 (2008).

    Article  CAS  Google Scholar 

  13. Faulkner, D.J. Highlights of marine natural products chemistry (1972–1999). Nat. Prod. Rep. 17, 1–6 (2000a).

    Article  CAS  Google Scholar 

  14. Zhang, H.W., Song, Y.C. & Tan, R.X. Biology and chemistry of endophytes. Nat. Prod. Rep. 23, 753–771, Erratum 828–830 (2006).

    Article  CAS  Google Scholar 

  15. Mayer, A. & Gustafson, K. Marine pharmacology in 2005–2006: antitumor and cytotoxic compounds. Eur. J. Cancer (2008).

  16. Bernan, V.S., Greenstein, M. & Maiese, W.M. Marine microorganisms as a source of new natural products. Adv. Appl. Microbiol. 43, 57 (1997).

    Article  CAS  Google Scholar 

  17. Höller, U. et al. Fungi from marine sponges: diversity, biological activity and secondary metabolites. Mycol. Res. 104, 1354–1365 (2000).

    Article  Google Scholar 

  18. Jensen, P.R. & Fenical, W. Marine microorganisms and drug discovery: current status and future potential. In Drugs from the Sea (Karger Publishers, Basel, Switzerland) 6–29 (2000).

  19. Jensen, P.R. & Fenical, W. Secondary metabolites from marine fungi. In Fungi in Marine Environments (ed. Hyde, K.D.) 293–315 (Fungal Diversity Press, Hong Kong, 2002).

  20. Koenig, G.M. & Wright, A. D. trends in marine biotechnology. In Drug Discovery from Nature (eds. Grabley, S & Thiericke, R), (Springer-Verlag, Berlin) 180–187 (1999).

  21. Verbist, J.F., Sallenave, C. & Pouchus, Y.F. Stud. Nat. Prod. Chem. 24, 979 (2000).

    Article  CAS  Google Scholar 

  22. Ebel, R. Secondary metabolites from marine derived fungi. In Frontiers in Marine Biotechnology (eds. Proksch, P. & Müller, W.E.G.) 73–143 (Horizon Scientific Press, Norwich, UK, 2006).

  23. Laatsch, H. Marine bacterial metabolites. In Frontiers in Marine Biotechnology (eds. Proksch, P. & Müller, W.E.G.) 225–288 (Horizon Scientific Press, Norwich, UK, 2006).

  24. Gerwick, W. The secondary metabolites and biosynthetic gene clusters of marine cyanobacteria. In Frontiers in Marine Biotechnology (eds. Proksch, P. & Müller, W.E.G.) 179–224 (Horizon Scientific Press, Norwich, UK, 2006).

  25. Shimizu, Y. & Li, B. Microalgae: special problems and methology. In Frontiers in Marine Biotechnology (eds. Proksch, P. & Müller, W.E.G.) 145–174 (Horizon Scientific Press, Norwich, UK, 2006).

  26. Newton, G.G.F. & Abraham, E.P. Cephalosporine C, a new antibiotic containing sulphur and D-α-aminoadipic acid. Nature 175, 548 (1955).

    Article  CAS  Google Scholar 

  27. Dalla Bona, A. et al. Synthesis, conformation, and bioactivity of novel analogues of the antiviral lipopeptide halovir A. J. Pept. Sci. 12, 748–757 (2006).

    Article  CAS  Google Scholar 

  28. Bringmann, G. et al. Large-scale biotechnological production of the anti-leukemic marine natural product sorbicillactone A. Mar. Drugs 5, 23–30 (2007).

    Article  CAS  Google Scholar 

  29. Blunt, J.W. et al. Marine natural products. Nat. Prod. Rep. 24, 31–86 (2007).

    Article  CAS  Google Scholar 

  30. Jones, G.E.B., Stanley, S.J. & Pinruan, U. Marine endophyte sources of new chemical natural products: a review. Botanica Marina 51, 163–170 (2008).

    Article  Google Scholar 

  31. Schulz, B. et al. Screening strategies for obtained novel, biologically active, fungal secondary metabolites from marine habitats. Botanica Marina 51, 219–234 (2008).

    Article  CAS  Google Scholar 

  32. Brauers, G. et al. Anthraquinones and betaenone derivatives from the sponge-associated fungus Microsphaeropsis sp.: novel inhibitors of protein kinases. J. Nat. Prod. 63, 739–745 (2000).

    Article  CAS  Google Scholar 

  33. Lin, W. et al. Novel chromone derivatives from the fungus Aspergillus versicolor isolated from the marine sponge Xestospongia exigua. J. Nat. Prod. 66, 57–61 (2003).

    Article  CAS  Google Scholar 

  34. Hallermann, J., Berg, G. & Schulz, B. Isolation procedures for endophytic microorganisms. In Microbial Root Endophytes (Soil Biology) (eds. Schulz, B., Boyle, C. and Sieber, T.N.) 299–328 (Springer-Verlag, Berlin Heidelberg, 2006).

  35. Klemke, C., Kehraus, S., Wright, A.D. & Koenig, G.M. New secondary metabolites from the marine endophytic fungus Apiospora montagnei. J. Nat. Prod. 67, 1058–1063 (2004).

    Article  CAS  Google Scholar 

  36. Gao, Z., Li, B., Zheng, C. & Wang, G. Molecular detection of fungal communities in the Hawaiian marine sponges Suberites zeteki and Mycale armata. Appl. Environ. Microbiol. 74, 6091–6101 (2008).

    Article  CAS  Google Scholar 

  37. Bode, H.B., Bethe, B., Höfs, R. & Zeeck, A. Big effects from small changes: possible ways to explore nature′s chemical diversity. Chembiochem 3, 619–627 (2002).

    Article  CAS  Google Scholar 

  38. Aly, A.H. et al. Cytotoxic metabolites from the fungal endophyte Alternaria sp. and their subsequent detection in its host plant Polygonum senegalense. J. Nat. Prod. 71, 972–980 (2008).

    Article  CAS  Google Scholar 

  39. Wang, S. et al. Chaetopyranin, a benzaldehyde derivative, and other related metabolites from Chaetomium globosum, an endophytic fungus derived from the marine red alga Polysiphonia urceolata. J. Nat. Prod. 69, 1622–1625 (2006).

    Article  CAS  Google Scholar 

  40. Kjer, J. Xanalteric acids I and II and related phenolic compounds from an endophytic Alternaria sp. isolated from the mangrove plant Sonneratia alba. J. Nat. Prod. 72, 2053–2057 (2009).

    Article  CAS  Google Scholar 

  41. Ebada, S.S., Edrada, R.A., Lin, W. & Proksch, P. Methods for isolation, purification and structural elucidation of bioactive secondary metabolites from marine invertebrates. Nat. Protoc. 3, 1820–1831 (2008).

    Article  CAS  Google Scholar 

  42. Xu, J. et al. Cytosporones, coumarins, and an alkaloid from the endophytic fungus Pestalotiopsis sp. isolated from the Chinese mangrove plant Rhizophora mucronata. Bioorg. Med. Chem. 17, 7362–7367 (2009).

    Article  CAS  Google Scholar 

  43. Jadulco, R. et al. New macrolides and furan carboxylic acid derivative from the sponge-derived fungus Cladosporium herbarum. J. Nat. Prod. 64, 527–530 (2001).

    Article  CAS  Google Scholar 

  44. Proksch, P. et al. Sponge-associated fungi and their bioactive compounds: the Suberites case. Botanica Marina 51, 209–218 (2008).

    Article  CAS  Google Scholar 

  45. Technische Regeln für biologische Arbeitsstoffe. TRBA 460: Einstufung von Pilzen in Risikogruppen. BArbBl. Heft 10, 78–84 (2002).

  46. Sichere Biotechnologie. Classification of biological agents: fungi. Merkblatt B007e (2003).

  47. Ashour, M. et al. Kahalalide derivatives from the Indian sacoglossan mollusk Elysia grandifolia. J. Nat. Prod. 69, 1547–1553 (2006).

    Article  CAS  Google Scholar 

  48. Meyer, B.N. et al. Brine shrimp: a convenient general bioassay for active plant constituents. Planta Med. 45, 31 (1982).

    Article  CAS  Google Scholar 

  49. Marfey, P. Determination of D-amino acids. Part II: use of a bifunctional reagent 1,5-difluoro-2,4-dinitrobenzene. Carlsberg Res. Commun. 49, 591–596 (1984).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are indebted to numerous previous coworkers and to several colleagues who were indispensable for our studies on marine-derived fungi. Continued support by BMBF to P.P. is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Proksch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kjer, J., Debbab, A., Aly, A. et al. Methods for isolation of marine-derived endophytic fungi and their bioactive secondary products. Nat Protoc 5, 479–490 (2010). https://doi.org/10.1038/nprot.2009.233

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2009.233

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing