Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Design and self-assembly of siRNA-functionalized RNA nanoparticles for use in automated nanomedicine

Abstract

Individual genes can be targeted with siRNAs. The use of nucleic acid nanoparticles (NPs) is a convenient method for delivering combinations of specific siRNAs in an organized and programmable manner. We present three assembly protocols to produce two different types of RNA self-assembling functional NPs using processes that are fully automatable. These NPs are engineered based on two complementary nanoscaffold designs (nanoring and nanocube), which serve as carriers of multiple siRNAs. The NPs are functionalized by the extension of up to six scaffold strands with siRNA duplexes. The assembly protocols yield functionalized RNA NPs, and we show that they interact in vitro with human recombinant Dicer to produce siRNAs. Our design strategies allow for fast, economical and easily controlled production of endotoxin-free therapeutic RNA NPs that are suitable for preclinical development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of three different cassette-based assembly protocols for siRNA-functionalized NPs.
Figure 2: Quality control experiments for assembled RNA NPs.
Figure 3: Functional control experiments for assembled RNA NPs.

Similar content being viewed by others

References

  1. Davis, M.E. et al. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 464, 1067–1070 (2010).

    Article  CAS  Google Scholar 

  2. Tarapore, P., Shu, Y., Guo, P. & Ho, S.M. Application of phi29 motor pRNA for targeted therapeutic delivery of siRNA silencing metallothionein-IIA and survivin in ovarian cancers. Mol. Ther. 19, 386–394 (2011).

    Article  CAS  Google Scholar 

  3. Shukla, G.C. et al. A boost for the emerging field of RNA nanotechnology. ACS Nano 5, 3405–3418 (2011).

    Article  CAS  Google Scholar 

  4. Guo, P. The emerging field of RNA nanotechnology. Nat. Nanotechnol. 5, 833–842 (2010).

    Article  CAS  Google Scholar 

  5. Shu, D., Shu, Y., Haque, F., Adbelmawla, S. & Guo, P. Thermodynamically stable RNA three-way junction for constructing multi-functional nanoparticles for delivery of therapeutics. Nat. Nanotechnol. 6, 658–667 (2011).

    Article  CAS  Google Scholar 

  6. Jackson, A.L. & Linsley, P.S. Recognizing and avoiding siRNA off-target effects for target identification and therapeutic application. Nat. Rev. Drug. Discov. 9, 57–67 (2010).

    Article  CAS  Google Scholar 

  7. Nakashima, Y., Abe, H., Abe, N., Aikawa, K. & Ito, Y. Branched RNA nanostructures for RNA interference. Chem. Commun. (Camb.) 47, 8367–8369 (2011).

    Article  CAS  Google Scholar 

  8. Grabow, W.W. et al. Self-assembling RNA nanorings based on RNAI/II inverse kissing complexes. Nano Lett. 11, 878–887 (2011).

    Article  CAS  Google Scholar 

  9. Khaled, A., Guo, S., Li, F. & Guo, P. Controllable self-assembly of nanoparticles for specific delivery of multiple therapeutic molecules to cancer cells using RNA nanotechnology. Nano Lett. 5, 1797–1808 (2005).

    Article  CAS  Google Scholar 

  10. Afonin, K.A. et al. In vitro assembly of cubic RNA-based scaffolds designed in silico. Nat. Nanotechnol. 5, 676–682 (2010).

    Article  CAS  Google Scholar 

  11. Davis, M.E. The first targeted delivery of siRNA in humans via a self-assembling, cyclodextrin polymer-based nanoparticle: from concept to clinic. Mol. Pharm. 6, 659–668 (2009).

    Article  CAS  Google Scholar 

  12. Giljohann, D.A., Seferos, D.S., Prigodich, A.E., Patel, P.C. & Mirkin, C.A. Gene regulation with polyvalent siRNA-nanoparticle conjugates. J. Am. Chem. Soc. 131, 2072–2073 (2009).

    Article  CAS  Google Scholar 

  13. Oh, Y.K. & Park, T.G. siRNA delivery systems for cancer treatment. Adv. Drug Deliv. Rev. 61, 850–862 (2009).

    Article  CAS  Google Scholar 

  14. Reischl, D. & Zimmer, A. Drug delivery of siRNA therapeutics: potentials and limits of nanosystems. Nanomedicine 5, 8–20 (2009).

    Article  CAS  Google Scholar 

  15. Kedmi, R., Ben-Arie, N. & Peer, D. The systemic toxicity of positively charged lipid nanoparticles and the role of Toll-like receptor 4 in immune activation. Biomaterials 31, 6867–6875 (2010).

    Article  CAS  Google Scholar 

  16. Pecot, C.V., Calin, G.A., Coleman, R.L., Lopez-Berestein, G. & Sood, A.K. RNA interference in the clinic: challenges and future directions. Nat. Rev. Cancer 11, 59–67 (2011).

    Article  CAS  Google Scholar 

  17. Tao, W. et al. Mechanistically probing lipid-siRNA nanoparticle-associated toxicities identifies Jak inhibitors effective in mitigating multifaceted toxic responses. Mol. Ther. 19, 567–575 (2011).

    Article  CAS  Google Scholar 

  18. Shu, Y., Cinier, M., Shu, D. & Guo, P. Assembly of multifunctional phi29 pRNA nanoparticles for specific delivery of siRNA and other therapeutics to targeted cells. Methods 54, 204–214 (2011).

    Article  CAS  Google Scholar 

  19. Jaeger, L. & Chworos, A. The architectonics of programmable RNA and DNA nanostructures. Curr. Opin. Struct. Biol. 16, 531–543 (2006).

    Article  CAS  Google Scholar 

  20. Jaeger, L., Westhof, E. & Leontis, N.B. TectoRNA: modular assembly units for the construction of RNA nano-objects. Nucleic Acids Res. 29, 455–463 (2001).

    Article  CAS  Google Scholar 

  21. Severcan, I. et al. Computational and experimental RNA nanoparticle design. In Automation in Genomics and Proteomics: An Engineering Case-Based Approach (eds. Alterovitz, G., Ramoni, M. & Benson, R.) 193–220 (Wiley Publishing, 2009).

  22. Shapiro, B.A., Bindewald, E., Kasprzak, W. & Yingling, Y. Protocols for the in silico design of RNA nanostructures. In Nanostructure Design: Methods and Protocols (eds. Gazit, E. & Nussinov, R.) 93–115 (Humana Press, 2008).

  23. Bindewald, E., Grunewald, C., Boyle, B., O'Connor, M. & Shapiro, B.A. Computational strategies for the automated design of RNA nanoscale structures from building blocks using NanoTiler. J. Mol. Graph Model 27, 299–308 (2008).

    Article  CAS  Google Scholar 

  24. Bindewald, E., Hayes, R., Yingling, Y.G., Kasprzak, W. & Shapiro, B.A. RNAJunction: a database of RNA junctions and kissing loops for three-dimensional structural analysis and nanodesign. Nucleic Acids Res. 36, D392–D397 (2008).

    Article  CAS  Google Scholar 

  25. Kasprzak, W., Bindewald, E., Kim, T.J., Jaeger, L. & Shapiro, B.A. Use of RNA structure flexibility data in nanostructure modeling. Methods 54, 239–235 (2011).

    Article  CAS  Google Scholar 

  26. Martinez, H.M., Maizel, J.V. Jr. & Shapiro, B.A. RNA2D3D: a program for generating, viewing, and comparing 3-dimensional models of RNA. J. Biomol. Struct. Dyn. 25, 669–683 (2008).

    Article  CAS  Google Scholar 

  27. Paliy, M., Melnik, R. & Shapiro, B.A. Molecular dynamics study of the RNA ring nanostructure: a phenomenon of self-stabilization. Phys. Biol. 6, 046003 (2009).

    Article  Google Scholar 

  28. Yingling, Y.G. & Shapiro, B.A. Computational design of an RNA hexagonal nanoring and an RNA nanotube. Nano Lett. 7, 2328–2334 (2007).

    Article  CAS  Google Scholar 

  29. Afonin, K.A., Cieply, D.J. & Leontis, N.B. Specific RNA self-assembly with minimal paranemic motifs. J. Am. Chem. Soc. 130, 93–102 (2008).

    Article  CAS  Google Scholar 

  30. Afonin, K.A. & Leontis, N.B. Generating new specific RNA interaction interfaces using C-loops. J. Am. Chem. Soc. 128, 16131–16137 (2006).

    Article  CAS  Google Scholar 

  31. Dibrov, S.M., McLean, J., Parsons, J. & Hermann, T. Self-assembling RNA square. Proc. Natl Acad. Sci. USA 108, 6405–6408 (2011).

    Article  CAS  Google Scholar 

  32. Severcan, I., Geary, C., Verzemnieks, E., Chworos, A. & Jaeger, L. Square-shaped RNA particles from different RNA folds. Nano Lett. 9, 1270–1277 (2009).

    Article  CAS  Google Scholar 

  33. Nasalean, L., Baudrey, S., Leontis, N.B. & Jaeger, L. Controlling RNA self-assembly to form filaments. Nucleic Acids Res. 34, 1381–1392 (2006).

    Article  CAS  Google Scholar 

  34. Chworos, A. et al. Building programmable jigsaw puzzles with RNA. Science 306, 2068–2072 (2004).

    Article  CAS  Google Scholar 

  35. Severcan, I. et al. A polyhedron made of tRNAs. Nat. Chem. 2, 772–779 (2010).

    Article  CAS  Google Scholar 

  36. Busch, A. & Backofen, R. INFO-RNA—a server for fast inverse RNA folding satisfying sequence constraints. Nucleic Acids Res. 35, W310–W313 (2007).

    Article  Google Scholar 

  37. Zadeh, J.N. et al. NUPACK: Analysis and design of nucleic acid systems. J. Comput. Chem. 32, 170–173 (2010).

    Article  Google Scholar 

  38. Hofacker, I.L. et al. Fast folding and comparison of RNA secondary structures. Monatshefte f. Chemie 125, 167–188 (1994).

    Article  CAS  Google Scholar 

  39. Elbashir, S.M., Lendeckel, W. & Tuschl, T. RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev. 15, 188–200 (2001).

    Article  CAS  Google Scholar 

  40. Hannon, G.J. RNA interference. Nature 418, 244–251 (2002).

    Article  CAS  Google Scholar 

  41. Kim, D.H. et al. Synthetic dsRNA Dicer substrates enhance RNAi potency and efficacy. Nat. Biotechnol. 23, 222–226 (2005).

    Article  CAS  Google Scholar 

  42. Martinez, J., Patkaniowska, A., Urlaub, H., Luhrmann, R. & Tuschl, T. Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell 110, 563–574 (2002).

    Article  CAS  Google Scholar 

  43. Rose, S.D. et al. Functional polarity is introduced by Dicer processing of short substrate RNAs. Nucleic Acids Res. 33, 4140–4156 (2005).

    Article  CAS  Google Scholar 

  44. Bindewald, E., Afonin, K., Jaeger, L. & Shapiro, B.A. Multi-strand secondary structure prediction and nanostructure design including pseudoknots. ACS Nano published online, doi:10.1021/nn202666w (8 November 2011).

  45. Berkhout, B. & Sanders, R.W. Molecular strategies to design an escape-proof antiviral therapy. Antiviral Res. 92, 7–14 (2011).

    Article  CAS  Google Scholar 

  46. Liu, Y.P. et al. Combinatorial RNAi against HIV-1 using extended short hairpin RNAs. Mol. Ther. 17, 1712–1723 (2009).

    Article  CAS  Google Scholar 

  47. Afonin, K.A., Danilov, E.O., Novikova, I.V. & Leontis, N.B. TokenRNA: a new type of sequence-specific, label-free fluorescent biosensor for folded RNA molecules. Chembiochem 9, 1902–1905 (2008).

    Article  CAS  Google Scholar 

  48. Tyner, K. & Sadrieh, N. Considerations when submitting nanotherapeutics to FDA/CDER for regulatory review. Methods Mol. Biol. 697, 17–31 (2011).

    Article  CAS  Google Scholar 

  49. Pulskamp, K., Diabate, S. & Krug, H.F. Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants. Toxicol. Lett. 168, 58–74 (2007).

    Article  CAS  Google Scholar 

  50. Vallhov, H. et al. The importance of an endotoxin-free environment during the production of nanoparticles used in medical applications. Nano Lett. 6, 1682–1686 (2006).

    Article  CAS  Google Scholar 

  51. US Food and Drug Administration, Dept. of Health and Human Services. Investigational new drug safety reporting requirements for human drug and biological products and safety reporting requirements for bioavailability and bioequivalence studies in humans. Final rule. Fed. Regist. 75, 59935–59963 (2010).

  52. Woods, T.O. Standards for medical devices in MRI: present and future. J. Magn. Reson. Imaging 26, 1186–1189 (2007).

    Article  Google Scholar 

  53. Dobrovolskaia, M.A. et al. Ambiguities in applying traditional limulus amebocyte lysate tests to quantify endotoxin in nanoparticle formulations. Nanomedicine (Lond.) 5, 555–562 (2009).

    Article  Google Scholar 

  54. Jones, C.F. & Grainger, D.W. In vitro assessments of nanomaterial toxicity. Adv. Drug Deliv. Rev. 61, 438–456 (2009).

    Article  CAS  Google Scholar 

  55. Hall, J.B., Dobrovolskaia, M.A., Patri, A.K. & McNeil, S.E. Characterization of nanoparticles for therapeutics. Nanomedicine (Lond.) 2, 789–803 (2007).

    Article  CAS  Google Scholar 

  56. Frantz, S. Safety concerns raised over RNA interference. Nat. Rev. Drug Discov. 5, 528–529 (2006).

    Article  CAS  Google Scholar 

  57. Petrocca, F. & Lieberman, J. Promise and challenge of RNA interference-based therapy for cancer. J. Clin. Oncol. 29, 747–754 (2011).

    Article  CAS  Google Scholar 

  58. Center for Biologic Evaluation and Research, Center for Devices and Radiological Health, and Center for Veterinary Medicine. Guideline on validation of the Limulus Amebocyte Lysate test as an end-product endotoxin test for human and animal parenteral drugs, biological products, and medical devices. (US Food and Drug Administration, 1987).

  59. USP, NF 30. Bacterial Endotoxins Test. Interim revision announcement, April 1, 2011 (The United States Pharmacopeial Convention, 2011).

  60. Bertrand, J.R., Maksimenko, A. & Malvy, C. Short double-stranded ribonucleic acid as inhibitor of gene expression by the interference mechanism. Methods Mol. Biol. 288, 411–430 (2005).

    CAS  PubMed  Google Scholar 

  61. Rapozzi, V. & Xodo, L.E. Efficient silencing of bcr/abl oncogene by single- and double-stranded siRNAs targeted against b2a2 transcripts. Biochemistry 43, 16134–16141 (2004).

    Article  CAS  Google Scholar 

  62. Li, Z.S. et al. Studies on aminoisonucleoside modified siRNAs: stability and silencing activity. Bioconjug. Chem. 18, 1017–1024 (2007).

    Article  CAS  Google Scholar 

  63. Provost, P. et al. Ribonuclease activity and RNA binding of recombinant human Dicer. EMBO J. 21, 5864–5874 (2002).

    Article  CAS  Google Scholar 

  64. Myers, J.W., Jones, J.T., Meyer, T. & Ferrell, J.E. Jr. Recombinant Dicer efficiently converts large dsRNAs into siRNAs suitable for gene silencing. Nat. Biotechnol. 21, 324–328 (2003).

    Article  CAS  Google Scholar 

  65. Neun, B.W. & Dobrovolskaia, M.A. Detection and quantitative evaluation of endotoxin contamination in nanoparticle formulations by LAL-based assays. Methods Mol. Biol. 697, 121–130 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported (in part) by the Intramural Research Program of the US National Institutes of Health (NIH), National Cancer Institute, Center for Cancer Research. This work has been funded in whole or in part with federal funds from the National Cancer Institute, NIH, under contract no. HHSN261200800001E. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products or organizations imply endorsement by the US government. This research was also supported by NIH grant no. R01GM-079604 (to L.J.). We are grateful to B. Neun for technical assistance with the LAL assay and to J. Hall for help with manuscript preparation.

Author information

Authors and Affiliations

Authors

Contributions

K.A.A., W.W.G., B.A.S. and L.J. conceived and designed the experiments. K.A.A., W.W.G., E.B., B.A.S. and L.J. contributed to the sequence and 3D model design. K.A.A., W.W.G. and F.M.W. performed self-assembly PAGE and dicing experiments. K.A.A. and F.M.W. performed DLS experiments. K.A.A., W.W.G., B.A.S. and L.J. analyzed the data. M.A.D. and K.A.A performed the LAL assay. K.A.A., W.W.G., B.A.S. and L.J. co-wrote the paper.

Corresponding authors

Correspondence to Bruce A Shapiro or Luc Jaeger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Data 1

RNA sequences used in this project. (DOCX 26 kb)

Supplementary Fig. 1

Schematic demonstration of 3′ ring scaffold functionalization with siRNA duplex. Please note that depending on tasks siRNA sense and antisense strands can be swapped. (EPS 509 kb)

Supplementary Fig. 2

Native PAGE results for native PAGE of assembly experiments for different protocols of duplex formation (between concatenated with sense strand cube strand D (siD) and corresponding radiolabeled antisense (Ant*)). (EPS 941 kb)

Supplementary Fig. 3

Native PAGE results for one-pot assembly experiments for the assembly of the cubes 3′ side concatenated with up to six identical siRNAs (eGFPS1) with corresponding yields of assembly. Radiolabeled strands are indicated with asterisks. Please note that depending on number and orientation of siRNA concatenated scaffold strands the shapes of NPs and their relative gel shifts may be slightly different (cubes functionalized with 4 siRNA duplexes). (EPS 5818 kb)

Supplementary Fig. 4

Native PAGE results for one-pot, step-wise and duplex assemblies of cubes and rings 3′ side concatenated with six different siRNAs (HIV-1). As the controls, assembled cubes and rings functionalized with 6 identical siRNAs (Figure 2) are used. (EPS 3059 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Afonin, K., Grabow, W., Walker, F. et al. Design and self-assembly of siRNA-functionalized RNA nanoparticles for use in automated nanomedicine. Nat Protoc 6, 2022–2034 (2011). https://doi.org/10.1038/nprot.2011.418

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2011.418

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research