Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Design, calibration and application of broad-range optical nanosensors for determining intracellular pH

Abstract

Particle-based nanosensors offer a tool for determining the pH in the endosomal-lysosomal system of living cells. Measurements providing absolute values of pH have so far been restricted by the limited sensitivity range of nanosensors, calibration challenges and the complexity of image analysis. This protocol describes the design and application of a polyacrylamide-based nanosensor (60 nm) that covalently incorporates two pH-sensitive fluorophores, fluorescein (FS) and Oregon Green (OG), to broaden the sensitivity range of the sensor (pH 3.1–7.0), and uses the pH-insensitive fluorophore rhodamine as a reference fluorophore. The nanosensors are spontaneously taken up via endocytosis and directed to the lysosomes where dynamic changes in pH can be measured with live-cell confocal microscopy. The most important focus areas of the protocol are the choice of pH-sensitive fluorophores, the design of calibration buffers, the determination of the effective range and especially the description of how to critically evaluate results. The entire procedure typically takes 2–3 weeks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic illustration of the design, calibration and application of the nanosensor in this protocol.
Figure 2
Figure 3: Calibration curves of dual- and triple-labeled nanosensors.
Figure 4: Buffering capacity of the buffer system.
Figure 5: Determination of calibration buffer concentration.
Figure 6: Frequency distributions of intensity ratios of a triple-labeled nanosensor diluted in buffers of different pH.
Figure 7: Intracellular pH measurements with a triple-labeled nanosensor.
Figure 8: Intracellular pH measurements with a dual-labeled nanosensor.
Figure 9: Effect of PEI on the lysosomal pH.

Similar content being viewed by others

References

  1. Casey, J.R., Grinstein, S. & Orlowski, J. Sensors and regulators of intracellular pH. Nat. Rev. Mol. Cell Biol. 11, 50–61 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Barry, M., Reynolds, J. & Eastman, A. Etoposide-induced apoptosis in human Hl-60 cells is associated with intracellular acidification. Cancer Res. 53, 2349–2357 (1993).

    CAS  PubMed  Google Scholar 

  3. Kornak, U. et al. Impaired glycosylation and cutis laxa caused by mutations in the vesicular H+-ATPase subunit ATP6V0A2. Nat. Genet. 40, 32–34 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Jahn, R., Lang, T. & Sudhof, T. Membrane fusion. Cell 112, 519–533 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Maxfield, F.R. & McGraw, T.E. Endocytic recycling. Nat. Rev. Mol. Cell Biol. 5, 121–132 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Hunte, C. et al. Structure of a Na+/H+ antiporter and insights into mechanism of action and regulation by pH. Nature 435, 1197–1202 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Andresen, T.L., Jensen, S.S. & Jorgensen, K. Advanced strategies in liposomal cancer therapy: problems and prospects of active and tumor-specific drug release. Prog. Lipid Res. 44, 68–97 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Bradley, M. et al. pH sensing in living cells using fluorescent microspheres. Bioorg. Med. Chem. Lett. 18, 313–317 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Lapresta-Fernandez, A. et al. Magnetic core-shell fluorescent pH ratiometric nanosensor using a Stober coating method. Anal. Chim. Acta 707, 164–170 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Hornig, S. et al. Biocompatible fluorescent nanoparticles for pH-sensoring. Soft Matter 4, 1169–1172 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Doussineau, T., Smaihi, M. & Mohr, G.J. Two-dye core/shell zeolite nanoparticles: a new tool for ratiometric pH measurements. Adv. Funct. Mater. 19, 117–122 (2009).

    Article  CAS  Google Scholar 

  12. Benjaminsen, R.V. et al. Evaluating nanoparticle sensor design for intracellular pH measurements. ACS Nano 5, 5864–5873 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Sun, H., Almdal, K. & Andresen, T.L. Expanding the dynamic measurement range for polymeric nanoparticle pH sensors. Chem. Commun. 47, 5268–5270 (2011).

    Article  CAS  Google Scholar 

  14. Kulichikhin, K.Y., Aitio, O., Chirkova, T.V. & Fagerstedt, K.V. Effect of oxygen concentration on intracellular pH, glucose-6-phosphate and NTP content in rice (Oryza sativa) and wheat (Triticum aestivum) root tips: in vivo P-31-NMR study. Physiol. Plantarum 129, 507–518 (2007).

    Article  CAS  Google Scholar 

  15. Sommer, S., Jahn, A., Funke, F. & Brenke, N. In vivo measurements of the internal pH of Hediste (Nereis) diversicolor (Annelida, Polychaeta) exposed to ambient sulphidic conditions using pH microelectrodes. Naturwissenschaften 87, 283–287 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Kneipp, J., Kneipp, H., Wittig, B. & Kneipp, K. Novel optical nanosensors for probing and imaging live cells. Nanomedicine 6, 214–226 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Han, J. & Burgess, K. Fluorescent indicators for intracellular pH. Chem. Rev. 110, 2709–2728 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Li, X., Gao, X., Shi, W. & Ma, H. Design strategies for water-soluble small molecular chromogenic and fluorogenic probes. Chem. Rev. 114, 590–659 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. Myochin, T. et al. Rational design of ratiometric near-infrared fluorescent pH probes with various pKa values, based on aminocyanine. J. Am. Chem. Soc. 133, 3401–3409 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Gan, B.S., Krump, E., Shrode, L.D. & Grinstein, S. Loading pyranine via purinergic receptors or hypotonic stress for measurement of cytosolic pH by imaging. Am. J. Physiol. 275, C1158–C1166 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Bizzarri, R., Serresi, M., Luin, S. & Beltram, F. Green fluorescent protein based pH indicators for in vivo use: a review. Anal. Bioanal. Chem. 393, 1107–1122 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Clark, H.A., Kopelman, R., Tjalkens, R. & Philbert, M.A. Optical nanosensors for chemical analysis inside single living cells. 2. Sensors for pH and calcium and the intracellular application of PEBBLE sensors. Anal. Chem. 71, 4837–4843 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Dennis, A.M., Rhee, W.J., Sotto, D., Dublin, S.N. & Bao, G. Quantum dot-fluorescent protein FRET probes for sensing intracellular pH. ACS Nano 6, 2917–2924 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Modi, S. et al. A DNA nanomachine that maps spatial and temporal pH changes inside living cells. Nat. Nanotechnol. 4, 325–330 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Mellman, I., Fuchs, R. & Helenius, A. Acidification of the endocytic and exocytic pathways. Annu. Rev. Biochem. 55, 663–700 (1986).

    Article  CAS  PubMed  Google Scholar 

  26. Luzio, J.P., Pryor, P.R. & Bright, N.A. Lysosomes: fusion and function. Nat. Rev. Mol. Cell Biol. 8, 622–632 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Su, M.H. et al. 1,9-Dihydro-3-phenyl-4H-pyrazolo[3,4-b]quinolin-4-one, a novel fluorescent probe for extreme pH measurement. Chem. Commun. 11, 960–961 (2001).

    Article  CAS  Google Scholar 

  28. Schulz, A. et al. Evaluation of fluorescent polysaccharide nanoparticles for pH-sensing. Org. Biomol. Chem. 7, 1884–1889 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Lee, R.J., Wang, S. & Low, P.S. Measurement of endosome pH following folate receptor-mediated endocytosis. Biochim. Biophys. Acta 1312, 237–242 (1996).

    Article  PubMed  Google Scholar 

  30. Sun, H., Benjaminsen, R.V., Almdal, K. & Andresen, T.L. Hyaluronic acid immobilized polyacrylamide nanoparticle sensors for CD44 receptor targeting and pH measurement in cells. Bioconjug. Chem. 23, 2247–2255 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Coupland, P.G., Briddon, S.J. & Aylott, J.W. Using fluorescent pH-sensitive nanosensors to report their intracellular location after Tat-mediated delivery. Integr. Biol. 1, 318–323 (2009).

    Article  CAS  Google Scholar 

  32. Disbrow, G.L., Hanover, J.A. & Schlegel, R. Endoplasmic reticulum-localized human papillomavirus type 16 E5 protein alters endosomal pH but not trans-Golgi pH. J. Virol. 79, 5839–5846 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jankowski, A. et al. In situ measurements of the pH of mammalian peroxisomes using the fluorescent protein pHluorin. J. Biol. Chem. 276, 48748–48753 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Llopis, J., McCaffery, J.M., Miyawaki, A., Farquhar, M.G. & Tsien, R.Y. Measurement of cytosolic, mitochondrial, and Golgi pH in single living cells with green fluorescent proteins. Proc. Natl. Acad. Sci. USA 95, 6803–6808 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yue, Z. et al. Surface charge affects cellular uptake and intracellular trafficking of chitosan-based nanoparticles. Biomacromolecules 12, 2440–2446 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Benjaminsen, R.V., Mattebjerg, M.A., Henriksen, J.R., Moghimi, S.M. & Andresen, T.L. The possible “proton sponge” effect of polyethylenimine (PEI) does not include change in lysosomal pH. Mol. Ther. 21, 149–157 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Doussineau, T., Trupp, S. & Mohr, G.J. Ratiometric pH-nanosensors based on rhodamine-doped silica nanoparticles functionalized with a naphthalimide derivative. J. Colloid Interface Sci. 339, 266–270 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Borisov, S.M., Herrod, D.L. & Klimant, I. Fluorescent poly(styrene-block-vinylpyrrolidone) nanobeads for optical sensing of pH. Sens. Actuators B 139, 52–58 (2009).

    Article  CAS  Google Scholar 

  39. McNamara, K.P. et al. Synthesis, characterization, and application of fluorescence sensing lipobeads for intracellular pH measurements. Anal. Chem. 73, 3240–3246 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Aylott, J. Optical nanosensors: an enabling technology for intracellular measurements. Analyst 128, 309–312 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Buck, S.M. et al. Optochemical nanosensor PEBBLEs: photonic explorers for bioanalysis with biologically localized embedding. Curr. Opin. Chem. Biol. 8, 540–546 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Sun, H., Andresen, T.L., Benjaminsen, R.V. & Almdal, K. Polymeric nanosensors for measuring the full dynamic pH range of endosomes and lysosomes in mammalian cells. J. Biomed. Nanotechnol. 5, 676–682 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Domingos, R.F. et al. Characterizing manufactured nanoparticles in the environment: multimethod determination of particle sizes. Environ. Sci. Technol. 43, 7277–7284 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Peng, J. et al. Noninvasive monitoring of intracellular pH change induced by drug stimulation using silica nanoparticle sensors. Anal. Bioanal. Chem. 388, 645–654 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Stone, V., Johnston, H. & Schins, R.P. Development of in vitro systems for nanotoxicology: methodological considerations. Crit. Rev. Toxicol. 39, 613–626 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Kroll, A., Pillukat, M.H., Hahn, D. & Schnekenburger, J. Current in vitro methods in nanoparticle risk assessment: limitations and challenges. Eur. J. Pharm. Biopharm. 72, 370–377 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Danish Cancer Society and the Danish Council for Independent Research (Technology and Production Sciences (FTP) grant no. 274-07-0172). We furthermore thank H. Sun and E.K.P. Kumar (Technical University of Denmark, Denmark) for synthesis of the nanosensors.

Author information

Authors and Affiliations

Authors

Contributions

R.V.S., J.R.H. and T.L.A. developed the protocol and analyzed the results. R.V.S. and T.L.A. designed the experiments and wrote the paper. R.V.S. performed all the experiments. J.R.H. wrote the code for image analysis.

Corresponding author

Correspondence to Thomas L Andresen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Three different calibration types of the nanosensor.

Calibration in buffer was performed in pure buffer as described in the main protocol. Calibration in artificial cytoplasm and with nigericin was performed as described in BOX 3. Briefly; artificial cytoplasm was prepared by sonication of HeLa cells and mixed with buffers with controlled pH. In situ calibration with nigericin was performed by treatment of nanosensor-containing cells with nigericin in K+-rich buffers. Mean ± SD between three images are presented. Reproduced with permission from Benjaminsen et al. (Evaluating Nanoparticle Sensor Design for Intracellular pH Measurements. ACS Nano 5, 5864-5873 (2011)). Copyright 2011 American Chemical Society.

Supplementary information

Supplementary Figure 1

Three different calibration types of the nanosensor. (PDF 75 kb)

Supplementary Discussion

Potential expansion of the protocol to measure other metabolites. (PDF 105 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Søndergaard, R., Henriksen, J. & Andresen, T. Design, calibration and application of broad-range optical nanosensors for determining intracellular pH. Nat Protoc 9, 2841–2858 (2014). https://doi.org/10.1038/nprot.2014.196

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2014.196

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing