Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Obtaining information about protein secondary structures in aqueous solution using Fourier transform IR spectroscopy

Abstract

Fourier transform IR (FTIR) spectroscopy is a nondestructive technique for structural characterization of proteins and polypeptides. The IR spectral data of polymers are usually interpreted in terms of the vibrations of a structural repeat. The repeat units in proteins give rise to nine characteristic IR absorption bands (amides A, B and I–VII). Amide I bands (1,700–1,600 cm−1) are the most prominent and sensitive vibrational bands of the protein backbone, and they relate to protein secondary structural components. In this protocol, we have detailed the principles that underlie the determination of protein secondary structure by FTIR spectroscopy, as well as the basic steps involved in protein sample preparation, instrument operation, FTIR spectra collection and spectra analysis in order to estimate protein secondary-structural components in aqueous (both H2O and deuterium oxide (D2O)) solution using algorithms, such as second-derivative, deconvolution and curve fitting. Small amounts of high-purity (>95%) proteins at high concentrations (>3 mg ml−1) are needed in this protocol; typically, the procedure can be completed in 1–2 d.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic overview of the full protocol.
Figure 2: Photographs of CaF2 liquid cells.
Figure 3
Figure 4: Water vapor spectrum.
Figure 5: IR analysis of hemoglobin.
Figure 6: An example of a poorly curve-fitted spectrum.
Figure 7: Second-derivative and FSD IR spectrum for three example proteins.

Similar content being viewed by others

References

  1. Baker, M.J. et al. Using Fourier transform IR spectroscopy to analyze biological materials. Nat. Protoc. 9, 1771–1791 (2014).

    Article  CAS  Google Scholar 

  2. Arrondo, J.L., Muga, A., Castresana, J. & Goni, F.M. Quantitative studies of the structure of proteins in solution by Fourier-transform infrared spectroscopy. Prog. Biophys. Mol. Biol. 59, 23–56 (1993).

    Article  CAS  Google Scholar 

  3. Purcell, J.M. & Susi, H. Solvent denaturation of proteins as observed by resolution-enhanced Fourier transform infrared spectroscopy. J. Biochem. Biophys. Methods 9, 193–199 (1984).

    Article  CAS  Google Scholar 

  4. Susi, H. & Byler, D.M. Resolution-enhanced Fourier transform infrared spectroscopy of enzymes. Methods Enzymol. 130, 290–311 (1986).

    Article  CAS  Google Scholar 

  5. Byler, D.M. & Susi, H. Examination of the secondary structure of proteins by deconvolved FTIR spectra. Biopolymers 25, 469–487 (1986).

    Article  CAS  Google Scholar 

  6. Dong, A., Huang, P. & Caughey, W.S. Protein secondary structures in water from second-derivative amide I infrared spectra. Biochemistry 29, 3303–3308 (1990).

    Article  CAS  Google Scholar 

  7. Lee, D.C., Haris, P.I., Chapman, D. & Mitchell, R.C. Determination of protein secondary structure using factor analysis of infrared spectra. Biochemistry 29, 9185–9193 (1990).

    Article  CAS  Google Scholar 

  8. Krimm, S. & Bandekar, J. Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins. Adv. Protein Chem. 38, 181–364 (1986).

    Article  CAS  Google Scholar 

  9. Bandekar, J. Amide modes and protein conformation. Biochim. Biophys. Acta 1120, 123–143 (1992).

    Article  CAS  Google Scholar 

  10. Singh Bal, R. in Infrared Analysis of Peptides and Proteins Vol. 750, 2–37 (American Chemical Society, 1999).

  11. Kong, J. & Yu, S. Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochim. Biophys. Sin. (Shanghai) 39, 549–559 (2007).

    Article  CAS  Google Scholar 

  12. Jiang, Y. et al. Qualification of FTIR spectroscopic method for protein secondary structural analysis. J. Pharm. Sci. 100, 4631–4641 (2011).

    Article  CAS  Google Scholar 

  13. Susi, H. & Michael Byler, D. Protein structure by Fourier transform infrared spectroscopy: second derivative spectra. Biochem. Biophys. Res. Commun. 115, 391–397 (1983).

    Article  CAS  Google Scholar 

  14. Lee, D.C., Hayward, J.A., Restall, C.J. & Chapman, D. Second-derivative infrared spectroscopic studies of the secondary structures of bacteriorhodopsin and Ca2+-ATPase. Biochemistry 24, 4364–4373 (1985).

    Article  CAS  Google Scholar 

  15. Yang, W.-J., Griffiths, P.R., Byler, D.M. & Susi, H. Protein conformation by infrared spectroscopy: resolution enhancement by Fourier self-deconvolution. Appl. Spectrosc. 39, 282–287 (1985).

    Article  CAS  Google Scholar 

  16. Olinger, J.M., Hill, D.M., Jakobsen, R.J. & Brody, R.S. Fourier transform infrared studies of ribonuclease in H2O and 2H2O solutions. Biochim. Biophys Acta 869, 89–98 (1986).

    Article  CAS  Google Scholar 

  17. Surewicz, W.K., Mantsch, H.H., Stahl, G.L. & Epand, R.M. Infrared spectroscopic evidence of conformational transitions of an atrial natriuretic peptide. Proc. Natl. Acad. Sci. USA 84, 7028–7030 (1987).

    Article  CAS  Google Scholar 

  18. Griebenow, K. & Klibanov, A.M. On protein denaturation in aqueousorganic mixtures but not in pure organic solvents. J. Am. Chem. Soc. 118, 11695–11700 (1996).

    Article  CAS  Google Scholar 

  19. Kauppinen, J.K., Moffatt, D.J., Mantsch, H.H. & Cameron, D.G. Fourier self-deconvolution: a method for resolving intrinsically overlapped bands. Appl. Spectrosc. 35, 271–276 (1981).

    Article  CAS  Google Scholar 

  20. Ruegg, M., Metzger, V. & Susi, H. Computer analyses of characteristic infrared bands of globular proteins. Biopolymers 14, 1465–1471 (1975).

    Article  CAS  Google Scholar 

  21. Fafarman, A.T. et al. Thiocyanate-capped nanocrystal colloids: vibrational reporter of surface chemistry and solution-based route to enhanced coupling in nanocrystal solids. J. Am. Chem. Soc. 133, 15753–15761 (2011).

    Article  CAS  Google Scholar 

  22. Lynch, I., Dawson, K.A. & Linse, S. Detecting cryptic epitopes created by nanoparticles. Sci. Signal. 2006, pe14 (2006).

    Article  Google Scholar 

  23. van Stokkum, I.H., Spoelder, H.J., Bloemendal, M., van Grondelle, R. & Groen, F.C. Estimation of protein secondary structure and error analysis from circular dichroism spectra. Anal. Biochem. 191, 110–118 (1990).

    Article  CAS  Google Scholar 

  24. Matsuo, K., Yonehara, R. & Gekko, K. Improved estimation of the secondary structures of proteins by vacuum-ultraviolet circular dichroism spectroscopy. J. Biochem. 138, 79–88 (2005).

    Article  CAS  Google Scholar 

  25. Greenfield, N.J. Using circular dichroism spectra to estimate protein secondary structure. Nat. Protoc. 1, 2876–2890 (2006).

    Article  CAS  Google Scholar 

  26. Arrondo, J.L.R. & Goñi, F.M. Structure and dynamics of membrane proteins as studied by infrared spectroscopy. Prog. Biophys. Mol. Biol. 72, 367–405 (1999).

    Article  CAS  Google Scholar 

  27. Goormaghtigh, E., Raussens, V. & Ruysschaert, J.M. Attenuated total reflection infrared spectroscopy of proteins and lipids in biological membranes. Biochim. Biophys. Acta 1422, 105–185 (1999).

    Article  CAS  Google Scholar 

  28. Barth, A. Infrared spectroscopy of proteins. Biochim. Biophys. Acta 1767, 1073–1101 (2007).

    Article  CAS  Google Scholar 

  29. Liu, K.Z., Shaw, R.A., Man, A., Dembinski, T.C. & Mantsch, H.H. Reagent-free, simultaneous determination of serum cholesterol in HDL and LDL by infrared spectroscopy. Clin. Chem. 48, 499–506 (2002).

    CAS  PubMed  Google Scholar 

  30. Lenk, T.J., Horbett, T.A., Ratner, B.D. & Chittur, K.K. Infrared spectroscopic studies of time-dependent changes in fibrinogen adsorbed to polyurethanes. Langmuir 7, 1755–1764 (1991).

    Article  CAS  Google Scholar 

  31. Goormaghtigh, E., Cabiaux, V. & Ruysschaert, J.M. Determination of soluble and membrane protein structure by Fourier transform infrared spectroscopy. III. Secondary structures. Subcell. Biochem. 23, 405–450 (1994).

    Article  CAS  Google Scholar 

  32. Tamm, L.K. & Tatulian, S.A. Infrared spectroscopy of proteins and peptides in lipid bilayers. Q. Rev. Biophys. 30, 365–429 (1997).

    Article  CAS  Google Scholar 

  33. Arrondo, J.L. & Goni, F.M. Structure and dynamics of membrane proteins as studied by infrared spectroscopy. Prog. Biophys. Mol. Biol. 72, 367–405 (1999).

    Article  CAS  Google Scholar 

  34. Chapman, D., Jackson, M. & Haris, P.I. Investigation of membrane protein structure using Fourier transform infrared spectroscopy. Biochem. Soc. Trans. 17, 617–619 (1989).

    Article  CAS  Google Scholar 

  35. Angeletti, R.H. (ed.) Techniques in Protein Chemistry III (Academic Press, 1992).

  36. Chittur, K.K. FTIR/ATR for protein adsorption to biomaterial surfaces. Biomaterials 19, 357–369 (1998).

    Article  CAS  Google Scholar 

  37. Yu, S. et al. Solution structure and structural dynamics of envelope protein domain III of mosquito-and tick-borne flaviviruses. Biochemistry 43, 9168–9176 (2004).

    Article  CAS  Google Scholar 

  38. Shen, X. et al. The secondary structure of calcineurin regulatory region and conformational change induced by calcium/calmodulin binding. J. Biol. Chem. 283, 11407–11413 (2008).

    Article  CAS  Google Scholar 

  39. Yu, S., Mei, F.C., Lee, J.C. & Cheng, X. Probing cAMP-dependent protein kinase holoenzyme complexes Iα and IIβ by FT-IR and chemical protein footprinting. Biochemistry 43, 1908–1920 (2004).

    Article  CAS  Google Scholar 

  40. Dong, A., Huang, P. & Caughey, W.S. Redox-dependent changes in β-extended chain and turn structures of cytochrome c in water solution determined by second derivative amide I infrared spectra. Biochemistry 31, 182–189 (1992).

    Article  CAS  Google Scholar 

  41. Dong, A. et al. Infrared and circular dichroism spectroscopic characterization of structural differences between β-lactoglobulin A and B. Biochemistry 35, 1450–1457 (1996).

    Article  CAS  Google Scholar 

  42. Dong, A., Matsuura, J., Manning, M.C. & Carpenter, J.F. Intermolecular β-sheet results from trifluoroethanol-induced nonnative α-helical structure in β-sheet predominant proteins: Infrared and circular dichroism spectroscopic study. Arch. Biochem. Biophys. 355, 275–281 (1998).

    Article  CAS  Google Scholar 

  43. Dong, A., Malecki, J.M., Lee, L., Carpenter, J.F. & Lee, J.C. Ligand-induced conformational and structural dynamics changes in Escherichia coli cyclic AMP receptor protein. Biochemistry 41, 6660–6667 (2002).

    Article  CAS  Google Scholar 

  44. Dong, A. et al. Secondary structure of recombinant human cystathionine β-synthase in aqueous solution: Effect of ligand binding and proteolytic truncation. Arch. Biochem. Biophys. 344, 125–132 (1997).

    Article  CAS  Google Scholar 

  45. Nasse, M.J., Ratti, S., Giordano, M. & Hirschmugl, C.J. Demountable liquid/flow cell for in vivo infrared microspectroscopy of biological specimens. Appl. Spectrosc. 63, 1181–1186 (2009).

    Article  CAS  Google Scholar 

  46. Surewicz, W.K. & Mantsch, H.H. New insight into protein secondary structure from resolution-enhanced infrared spectra. Biochim. Biophys. Acta 952, 115–130 (1988).

    Article  CAS  Google Scholar 

  47. Kalnin, N.N., Baikalov, I.A. & Venyaminov, S. Quantitative IR spectrophotometry of peptide compounds in water (H2O) solutions. III. Estimation of the protein secondary structure. Biopolymers 30, 1273–1280 (1990).

    Article  CAS  Google Scholar 

  48. Venyaminov, S. & Kalnin, N.N. Quantitative IR spectrophotometry of peptide compounds in water (H2O) solutions. II. Amide absorption bands of polypeptides and fibrous proteins in α-, β-, and random coil conformations. Biopolymers 30, 1259–1271 (1990).

    Article  CAS  Google Scholar 

  49. Dong, A., Huang, P., Caughey, B. & Caughey, W.S. Infrared analysis of ligand- and oxidation-induced conformational changes in hemoglobins and myoglobins. Arch. Biochem. Biophys. 316, 893–898 (1995).

    Article  CAS  Google Scholar 

  50. Cameron, D.G. & Moffatt, D.J. A generalized approach to derivative spectroscopy. Appl. Spectrosc. 41, 539–544 (1987).

    Article  CAS  Google Scholar 

  51. Sarver, R.W. Jr & Krueger, W.C. Protein secondary structure from Fourier transform infrared spectroscopy: a database analysis. Anal. Biochem. 194, 89–100 (1991).

    Article  CAS  Google Scholar 

  52. Holloway, P.W. & Mantsch, H.H. Structure of cytochrome b5 in solution by Fourier-transform infrared spectroscopy. Biochemistry 28, 931–935 (1989).

    Article  CAS  Google Scholar 

  53. Chou, P.Y. & Fasman, G.D. β-turns in proteins. J. Mol. Biol. 115, 135–175 (1977).

    Article  CAS  Google Scholar 

  54. Venyaminov, S. & Kalnin, N.N. Quantitative IR spectrophotometry of peptide compounds in water (H2O) solutions. I. Spectral parameters of amino acid residue absorption bands. Biopolymers 30, 1243–1257 (1990).

    Article  CAS  Google Scholar 

  55. Dong, A., Randolph, T.W. & Carpenter, J.F. Entrapping intermediates of thermal aggregation in α-helical proteins with low concentration of guanidine hydrochloride. J. Biol. Chem. 275, 27689–27693 (2000).

    CAS  PubMed  Google Scholar 

  56. Yu, S., Fan, F., Flores, S.C., Mei, F. & Cheng, X. Dissecting the mechanism of Epac activation via hydrogen–deuterium exchange FT-IR and structural modeling. Biochemistry 45, 15318–15326 (2006).

    Article  CAS  Google Scholar 

  57. Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970).

    Article  CAS  Google Scholar 

  58. Bassan, P. et al. Resonant Mie scattering in infrared spectroscopy of biological materials: understanding the 'dispersion artefact'. Analyst 134, 1586–1593 (2009).

    Article  CAS  Google Scholar 

  59. Kelly, J.G. et al. Biospectroscopy to metabolically profile biomolecular structure: a multistage approach linking computational analysis with biomarkers. J. Proteome Res. 10, 1437–1448 (2011).

    Article  CAS  Google Scholar 

  60. Prestrelski, S.J., Byler, D.M. & Liebman, M.N. Comparison of various molecular forms of bovine trypsin: correlation of infrared spectra with X-ray crystal structures. Biochemistry 30, 133–143 (1991).

    Article  CAS  Google Scholar 

  61. Savitzky, A. & Golay, M.J.E. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 36, 1627–1639 (1964).

    Article  CAS  Google Scholar 

  62. Dong, A., Huang, P. & Caughey, W.S. Redox-dependent changes in β-sheet and loop structures of Cu,Zn superoxide dismutase in solution observed by infrared spectroscopy. Arch. Biochem. Biophys. 320, 59–64 (1995).

    Article  CAS  Google Scholar 

  63. Sharma, H., Yu, S., Kong, J., Wang, J. & Steitz, T.A. Structure of apo-CAP reveals that large conformational changes are necessary for DNA binding. Proc. Natl. Acad. Sci. USA 106, 16604–16609 (2009).

    Article  CAS  Google Scholar 

  64. Levitt, M. & Greer, J. Automatic identification of secondary structure in globular proteins. J. Mol. Biol. 114, 181–239 (1977).

    Article  CAS  Google Scholar 

  65. Pace, C.N., Vajdos, F., Fee, L., Grimsley, G. & Gray, T. How to measure and predict the molar absorption coefficient of a protein. Protein Sci. 4, 2411–2423 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was supported in part by grants from the National Natural Science Foundation of China (nos. 21275032, 31470786 and 21335002).

Author information

Authors and Affiliations

Authors

Contributions

H.Y. and S. Yu designed, implemented and wrote the protocol. S. Yang and J.K. implemented the protocol. A.D. contributed to data analysis.

Corresponding authors

Correspondence to Aichun Dong or Shaoning Yu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Yang, S., Kong, J. et al. Obtaining information about protein secondary structures in aqueous solution using Fourier transform IR spectroscopy. Nat Protoc 10, 382–396 (2015). https://doi.org/10.1038/nprot.2015.024

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2015.024

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing