Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Therapeutic angiogenesis for critical limb ischaemia

Abstract

Peripheral arterial disease (PAD) is caused by occlusive atherosclerosis in a vascular bed other than the heart. The lower extremity is the most-common location for PAD. Critical limb ischaemia (CLI) is the most-severe clinical manifestation of PAD. Despite improvements in medical care and revascularization, patients with CLI continue to have a high risk of major amputation (below the knee or higher) and cardiovascular death. The primary goal of therapy in CLI is to achieve blood flow to the distal limb vessels with angioplasty or bypass surgery. However, many patients with CLI are unsuitable for revascularization, or the procedure is unsuccessful. Angiogenesis is the growth and proliferation of blood vessels from an existing vascular structure. In therapeutic angiogenesis, attempts are made to utilize blood vessel growth to augment perfusion. In this Review, data from phase II and III clinical trials of therapeutic angiogenesis in patients with PAD will be presented and discussed. Potential explanations for the limited success of therapeutic angiogenesis in humans will be viewed in the context of advances in our understanding of the complex mechanisms underlying angiogenesis and vascular remodelling. This Review will also cover how advances in systems biology, genetics, and gene therapy might still allow the development of new approaches to therapeutic angiogenesis and achieve the goal of restoring perfusion.

Key Points

  • Peripheral arterial disease is a manifestation of systematic atherosclerosis that causes impaired blood flow to the leg; critical limb ischaemia is the most-severe form of peripheral arterial disease

  • Angiogenesis is the growth of blood vessels from existing vascular structures, whereas 'therapeutic angiogenesis' is a strategy that seeks to promote blood vessel growth to improve tissue perfusion

  • Vascular remodelling that is sufficient to augment tissue perfusion is likely to involve a combination of the processes of angiogenesis, arteriogenesis, and vasculogenesis

  • Although a series of randomized, double-blind, placebo-controlled trials in therapeutic angiogenesis have been completed, the degree of success in these studies has been limited

  • Future research directions in therapeutic angiogenesis and gene therapy include the identification of new vectors to improve gene transfer, as well as new genes designed to improve tissue perfusion

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Symptomatic peripheral arterial disease resulting from atherosclerotic occlusion in the arteries of the lower extremities.
Figure 2: Delivery of blood to the distal muscle bed through inflow arteries and feeder vessels, in healthy individuals and in the setting of peripheral arterial disease.

Similar content being viewed by others

References

  1. Belch, J. J. et al. Critical issues in peripheral arterial disease detection and management: a call to action. Arch. Intern. Med. 163, 884–892 (2003).

    Article  PubMed  Google Scholar 

  2. Norgren, L. et al. Inter-society consensus for the management of peripheral arterial disease (TASCII). J. Vasc. Surg. 45 (Suppl. S), S5–S67 (2007).

    Article  PubMed  Google Scholar 

  3. Roger, V. L. et al. Heart disease and stroke statistics—2011 update: a report from the American Heart Association. Circulation 123, e18–e209 (2011).

    Article  PubMed  Google Scholar 

  4. Beckman, J. A., Creager, M. A. & Libby, P. Diabetes and atherosclerosis: epidemiology, pathophysiology, and management. JAMA 287, 2570–2581 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Dormandy, J., Heeck, L. & Vig, S. The fate of patients with critical leg ischemia. Semin. Vasc. Surg. 12, 142–147 (1999).

    CAS  PubMed  Google Scholar 

  6. Hankey, G. J., Norman, P. E. & Eikelboom, J. W. Medical treatment of peripheral arterial disease. JAMA 295, 547–553 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Hiatt, W. R., Hoag, S. & Hamman, R. F. Effect of diagnostic criteria on the prevalence of peripheral arterial disease. The San Luis Valley Diabetes Study. Circulation 91, 1472–1479 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Hiatt, W. R. Medical treatment of peripheral arterial disease and claudication. N. Engl. J. Med. 344, 1608–1621 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Fontaine, R., Kim, M. & Kieny, R. Surgical treatment of peripheral circulation disorders [German]. Helv. Chir. Acta 21, 499–533 (1954).

    CAS  PubMed  Google Scholar 

  10. Dormandy, J. A. & Rutherford, R. B. Management of peripheral arterial disease (PAD). TASC Working Group. TransAtlantic Inter-Society Consensus (TASC). J. Vasc. Surg. 31, S1–S296 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Brass, E. P. et al. Parenteral therapy with lipo-ecraprost, a lipid-based formulation of a PGE1 analog, does not alter six-month outcomes in patients with critical leg ischemia. J. Vasc. Surg. 43, 752–759 (2006).

    Article  PubMed  Google Scholar 

  12. Ouriel, K. Peripheral arterial disease. Lancet 358, 1257–1264 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Berceli, S. A. et al. Surgical and endovascular revision of infrainguinal vein bypass grafts: analysis of midterm outcomes from the PREVENT III trial. J. Vasc. Surg. 46, 1173–1179 (2007).

    Article  PubMed  Google Scholar 

  14. Folkman, J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat. Med. 1, 27–31 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Simons, M. Angiogenesis: where do we stand now? Circulation 111, 1556–1566 (2005).

    Article  PubMed  Google Scholar 

  16. Losordo, D. W. & Dimmler, S. Therapeutic angiogenesis and vasculogenesis for ischemic disease. Part I: angiogenic cytokines. Circulation 109, 2487–2491 (2004).

    Article  PubMed  Google Scholar 

  17. Asahara, T. et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science 275, 964–967 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Ito, W. D. et al. Angiogenesis but not collateral growth is associated with ischemia after femoral artery occlusion. Am. J. Physiol. 273, H1255–H1265 (1997).

    CAS  PubMed  Google Scholar 

  19. Robbins, J. L. et al. Relationship between leg muscle capillary density and peak hyperemic blood flow with endurance capacity in peripheral artery disease. J. Appl. Phys. 111, 81–86 (2011).

    Google Scholar 

  20. Askew, C. D. et al. Skeletal muscle phenotype is associated with exercise tolerance in patients with peripheral arterial disease. J. Vasc. Surg. 41, 802–807 (2005).

    Article  PubMed  Google Scholar 

  21. Mitchell, R. G. et al. Increased levels of apoptosis in gastrocnemius skeletal muscle in patients with peripheral arterial disease. Vasc. Med. 12, 285–290 (2007).

    Article  PubMed  Google Scholar 

  22. Duscha, B. D. et al. Angiogenesis in skeletal muscle precede improvements in peak oxygen uptake in peripheral artery disease patients. Arterioscler. Thromb. Vasc. Biol. 31, 2742–2748 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gardner, A. W. & Killewich, L. A. Lack of functional benefits following infrainguinal bypass in peripheral arterial occlusive disease patients. Vasc. Med. 6, 9–14 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Schaper, W. & Buschmann, I. Arteriogenesis, the good and bad of it. Cardiovasc. Res. 43, 835–837 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Chalothorn, D. et al. Collateral density, remodeling, and VEGF-A expression differ widely between mouse strains. Physiol. Genomics 30, 179–191 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. de Muinck, E. D. & Simons, M. Re-evaluating therapeutic neovascularization. J. Mol. Cell. Cardiol. 36, 25–32 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Heil, M., Ziegelhoeffer, T., Mees, B. & Schaper, W. A different outlook on the role of bone marrow stem cells in vascular growth: bone marrow delivers software not hardware. Circ. Res. 94, 573–574 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Luttun, A. & Carmeliet, P. De novo vasculogenesis in the heart. Cardiovasc. Res. 58, 378–389 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Mac Gabhann, F., Qutub, A. A., Annex, B. H. & Popel, A. S. Systems biology of pro-angiogenic therapies targeting the VEGF system. Wiley Interdiscip. Rev. Syst. Biol. Med. 2, 694–707 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ferrara, N. Vascular endothelial growth factor. Arterioscler. Thromb. Vasc. Biol. 29, 789–791 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Vempati, P. Mac Gabhann, F. & Popel, A. S. Formation of VEGF isoform-specific spatial distributions governing angiogenesis: computational analysis. BMC Syst. Biol. 5, 59 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Qutub, A. A., Mac Gabhann, F., Karagiannis, E. D., Vempati, P. & Popel, A. S. Multiscale models of angiogenesis. IEEE Eng. Med. Biol. Mag. 28, 14–31 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Stefanini, M. O., Wu, F. T., Mac Gabhann, F. & Popel, A. S. A compartment model of VEGF distribution in blood, healthy and diseased tissues. BMC Syst. Biol. 2, 77 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Wu, F. T. et al. Computational kinetic model of VEGF trapping by soluble VEGF receptor-1: Effects of transendothelial and lymphatic macromolecular transport. Physiol. Genomics 38, 29–41 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hazarika, S. et al. Impaired angiogenesis after hindlimb ischemia in type 2 diabetes mellitus: differential regulation of vascular endothelial growth factor receptor 1 and soluble vascular endothelial growth factor receptor 1. Circ. Res. 101, 948–956 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Mac Gabhann, F. & Popel, A. S. Model of competitive binding of vascular endothelial growth factor and placental growth factor to VEGF receptors on endothelial cells. Am. J. Physiol. Heart Circ. Physiol. 286, H153–H164 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Mac Gabhann, F., Annex, B. H. & Popel, A. S. Gene therapy from the perspective of systems biology. Curr. Opin. Mol. Ther. 12, 570–577 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Wu, F. T. et al. VEGF and soluble VEGF receptor-1 (sFlt-1) distributions in peripheral arterial disease: an in silico model. Am. J. Physiol. Heart Circ. Physiol. 298, H2174–H2191 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Folkman, J. Tumor angiogenesis: therapeutic implications. N. Engl. J. Med. 285, 1182–1186 (1971).

    Article  CAS  PubMed  Google Scholar 

  40. Senger, D. R. et al. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 219, 983–985 (1983).

    Article  CAS  PubMed  Google Scholar 

  41. Rajagopalan, S. et al. Regional angiogenesis with vascular endothelial growth factor in peripheral arterial disease: a phase II randomized, double-blind, controlled study of adenoviral delivery of vascular endothelial growth factor 121 in patients with disabling intermittent claudication. Circulation 108, 1933–1938 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. de Vries, C. et al. The fms-like tyrosine kinase, a receptor for vascular endothelial growth factor. Science 255, 989–991 (1992).

    Article  CAS  PubMed  Google Scholar 

  43. Isner, J. M. et al. Clinical evidence of angiogenesis after arterial gene transfer of phVEGF165 in patient with ischaemic limb. Lancet 348, 370–374 (1996).

    Article  CAS  PubMed  Google Scholar 

  44. Lederman, R. J. et al. Therapeutic angiogenesis with recombinant fibroblast growth factor-2 for intermittent claudication (the TRAFFIC study): a randomised trial. Lancet 359, 2053–2058 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Simons, M. et al. Pharmacological treatment of coronary artery disease with recombinant fibroblast growth factor-2: double-blind, randomized, controlled clinical trial. Circulation 105, 788–793 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Grines, C. L. et al. Angiogenic Gene Therapy (AGENT) trial in patients with stable angina pectoris. Circulation 105, 1291–1297 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Kusumanto, Y. H. et al. Treatment with intramuscular vascular endothelial growth factor gene compared with placebo for patients with diabetes mellitus and critical limb ischemia: a double-blind randomized trial. Hum. Gene Ther. 17, 683–691 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Witzenbichler, B. et al. Intramuscular gene transfer of fibroblast growth factor-1 using improved pCOR plasmid design stimulates collateral formation in a rabbit ischemic hindlimb model. J. Molec. Med. 84, 491–502 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Comerota, A. J. et al. Naked plasmid DNA encoding fibroblast growth factor type 1 for the treatment of end-stage unreconstructible lower extremity ischemia: preliminary results of a phase I trial. J. Vasc. Surg. 35, 930–936 (2002).

    Article  PubMed  Google Scholar 

  50. Baumgartner, I. et al. Local gene transfer and expression following intramuscular administration of FGF-1 plasmid DNA in patients with critical limb ischemia. Mol. Ther. 17, 914–921 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Nikol, S. et al. Therapeutic angiogenesis with intramuscular NV1FGF improves amputation-free survival in patients with critical limb ischemia. Mol. Ther. 16, 972–978 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Belch, J. et al. Effect of fibroblast growth factor NV1FGF on amputation and death: a randomised placebo-controlled trial of gene therapy in critical limb ischaemia. Lancet 377, 1929–1937 (2011).

    Article  CAS  PubMed  Google Scholar 

  53. Tashiro, K. et al. Deduced primary structure of rat hepatocyte growth factor and expression of the mRNA in rat tissues. Proc. Natl Acad. Sci. USA 87, 3200–3204 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hayashi. S. et al. Potential role of hepatocyte growth factor, a novel angiogenic growth factor, in peripheral arterial disease: downregulation of HGF in response to hypoxia in vascular cells. Circulation 100 (19 Suppl.), II301–II308 (1999).

    CAS  PubMed  Google Scholar 

  55. Powell, R. J. et al. Results of a double-blind, placebo-controlled study to assess the safety of intramuscular injection of hepatocyte growth factor plasmid to improve limb perfusion in patients with critical limb ischemia. Circulation 118, 58–65 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Powell, R. J. et al. Safety and efficacy of patient specific intramuscular injection of HGF plasmid gene therapy on limb perfusion and wound healing in patients with ischemic lower extremity ulceration: results of the HGF-0205 trial. J. Vasc. Surg. 52, 1525–1530 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Shigematsu, H. et al. Randomized, double-blind, placebo-controlled clinical trial of hepatocyte growth factor plasmid for critical limb ischemia. Gene Ther. 17, 1152–1161 (2010).

    Article  CAS  PubMed  Google Scholar 

  58. Creager, M. A. et al. Effect of hypoxia-inducible factor-1alpha gene therapy on walking performance in patients with intermittent claudication. Circulation 124, 1765–1773 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Chung, A. S., Lee, J. & Ferrara, N. Targeting the tumour vasculature: insights from physiological angiogenesis. Nat. Rev. Cancer 10, 505–514 (2010).

    Article  CAS  PubMed  Google Scholar 

  60. Ferrara, N. Vascular endothelial growth factor and age-related macular degeneration: from basic science to therapy. Nat. Med. 16, 1107–1111 (2010).

    Article  CAS  PubMed  Google Scholar 

  61. Tang, G. L. et al. The effect of gradual or acute arterial occlusion on skeletal muscle blood flow, arteriogenesis, and inflammation in rat hindlimb ischemia. J. Vasc. Surg. 41, 312–320 (2005).

    Article  PubMed  Google Scholar 

  62. Waters, R. E., Terjung, R. L., Peters, K. G. & Annex, B. H. Preclinical models of human peripheral arterial occlusive disease: implications for investigation of therapeutic agents. J. Appl. Physiol. 97, 773–780 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Dokun A. O. et al. A quantitative trait locus (LSq-1) on mouse chromosome 7 is linked to the absence of tissue loss after surgical hindlimb ischemia. Circulation 117, 1207–1215 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Allen, J. D. et al. Plasma nitrite response and arterial reactivity differentiate vascular health and performance. Nitric Oxide 20, 231–237 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sun, L., Bai, Y. & Du, G. Endothelial dysfunction—an obstacle of therapeutic angiogenesis. Ageing Res. Rev. 8, 306–313 (2009).

    Article  CAS  PubMed  Google Scholar 

  66. Tuomisto, T. T. et al. HIF-VEGF-VEGFR-2, TNF-alpha and IGF pathways are upregulated in critical human skeletal muscle ischemia as studied with DNA array. Atherosclerosis 174, 111–120 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Nakamura, T. et al. Myocardial protection from ischemia/reperfusion injury by endogenous and exogenous HGF. J. Clin. Invest. 106, 1511–1519 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yamamura, Y. et al. IGF-I differentially regulates Bcl-xL and Bax and confers myocardial protection in the rat heart. Am. J. Physiol. Heart Circ. Physiol. 280, H1191–H1200 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Helisch, A. et al. Impact of mouse strain differences in innate hindlimb collateral vasculature. Arterioscler. Thromb. Vasc. Biol. 26, 520–526 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Reny, J. L. et al. The factor II G20210A gene polymorphism, but not factor V Arg506Gln, is associated with peripheral arterial disease: results of a case–control study. J. Thromb. Haemost. 2, 1334–1340 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Fontana, P. et al. P2Y12 H2 haplotype is associated with peripheral arterial disease: a case–control study. Circulation 108, 2971–2973 (2003).

    Article  PubMed  Google Scholar 

  72. Fowkes, F. G. et al. Fibrinogen genotype and risk of peripheral atherosclerosis. Lancet 339, 693–696 (1992).

    Article  CAS  PubMed  Google Scholar 

  73. Gudmundsson, G. et al. Localization of a gene for peripheral arterial occlusive disease to chromosome 1p31. Am. J. Hum. Genet. 70, 586–592 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Murabito, J. M. et al. Association between chromosome 9p21 variants and the ankle–brachial index identified by a meta-analysis of 21 genome-wide association studies. Circ. Cardiovasc. Genet. 5, 100–112 (2012).

    Article  CAS  PubMed  Google Scholar 

  75. Da Silva, A. et al. The Basle longitudinal study: report on the relation of initial glucose level to baseline ECG abnormalities, peripheral artery disease, and subsequent mortality. J. Chronic Dis. 32, 797–803 (1979).

    Article  CAS  PubMed  Google Scholar 

  76. Willigendael, E. M. et al. Influence of smoking on incidence and prevalence of peripheral arterial disease. J. Vasc. Surg. 40, 1158–1165 (2004).

    Article  PubMed  Google Scholar 

  77. Scholz, D. et al. Contribution of arteriogenesis and angiogenesis to postocclusive hindlimb perfusion in mice. J. Mol. Cell. Cardiol. 34, 775–787 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Fukino, K., Sata, M., Seko, Y., Hirata, Y. & Nagai, R. Genetic background influences therapeutic effectiveness of VEGF. Biochem. Biophys. Res. Commun. 310, 143–147 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Rissanen, T. T. & Ylä-Herttuala, S. Current status of cardiovascular gene therapy. Mol. Ther. 15, 1233–1247 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Kotchey, N. M. et al. A potential role of distinctively delayed blood clearance of recombinant adeno-associated virus serotype 9 in robust cardiac transduction. Mol. Ther. 19, 1079–1089 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hernandez, Y. J. et al. Latent adeno-associated virus infection elicits humoral but not cell-mediated immune responses in a nonhuman primate model. J. Virol. 73, 8549–8558 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Saqib, A. et al. Adeno-associated virus serotype 9-mediated overexpression of extracellular superoxide dismutase improves recovery from surgical hind-limb ischemia in BALB/c mice. J. Vasc. Surg. 54, 810–818 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Katwal, A. B. et al. Adeno-associated virus serotype 9 efficiently targets ischemic skeletal muscle following systemic delivery in a mouse model of peripheral arterial disease [abstract A14001]. Circulation 124, A14001 (2011).

    Google Scholar 

Download references

Acknowledgements

The author's work is supported by grant 1R01HL101200 from the National Heart Lung and Blood Institute.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author has acted as a consultant for AnGes MG.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Annex, B. Therapeutic angiogenesis for critical limb ischaemia. Nat Rev Cardiol 10, 387–396 (2013). https://doi.org/10.1038/nrcardio.2013.70

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2013.70

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing