Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of tumour–stromal interactions in modifying drug response: challenges and opportunities

Key Points

  • It is increasingly recognized that the tumour microenvironment has a crucial role in modulating tumour sensitivity to drugs.

  • Stromal influence can render cancer cells more resistant to particular drugs, but can also enhance the responsiveness of tumour cells to other drugs.

  • The interplay between tumour cells and stromal cells is complex and mediated by a range of soluble factors and cell–cell interactions.

  • Understanding these interactions opens a host of opportunities for drug discovery. However, it is important that relevant in vivo models are used that faithfully replicate interactions between tumour cells and their microenvironment.

  • Orthotopic and orthometastatic xenograft mouse models allow for an assessment of the impact of the tumour microenvironment on therapeutic efficacy.

  • Such advances should help to bridge the gap between preclinical studies and clinical trials of anticancer agents.

Abstract

The role of stromal cells and the tumour microenvironment in general in modulating tumour sensitivity is increasingly becoming a key consideration for the development of active anticancer therapeutics. Here, we discuss how these tumour–stromal interactions affect tumour cell signalling, survival, proliferation and drug sensitivity. Particular emphasis is placed on the ability of stromal cells to confer — to tumour cells — resistance or sensitization to different classes of therapeutics, depending on the specific microenvironmental context. The mechanistic understanding of these microenvironmental interactions can influence the evaluation and selection of candidate agents for various cancers, in both the primary site as well as the metastatic setting. Progress in in vitro screening platforms as well as orthotopic and 'orthometastatic' xenograft mouse models has enabled comprehensive characterization of the impact of the tumour microenvironment on therapeutic efficacy. These recent advances can hopefully bridge the gap between preclinical studies and clinical trials of anticancer agents.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Extracellular tumour–microenvironment interactions.
Figure 2: Examples of transcripts upregulated in myeloma cells interacting with bone marrow stromal cells.
Figure 3: Possible uses of genetically engineered mouse models in an orthotopic or orthometastatic manner for the preclinical evaluation of anticancer therapeutics.

Similar content being viewed by others

References

  1. Dvorak, H. F. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N. Engl. J. Med. 315, 1650–1659 (1986).

    Article  CAS  PubMed  Google Scholar 

  2. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Paget, S. The distribution of secondary growths in cancer of the breast. Lancet 1, 571–573 (1889).

    Article  Google Scholar 

  4. Wilson, C., Holen, I. & Coleman, R. E. Seed, soil and secreted hormones: potential interactions of breast cancer cells with their endocrine/paracrine microenvironment and implications for treatment with bisphosphonates. Cancer Treat. Rev. 38, 877–889 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Mendoza, M. & Khanna, C. Revisiting the seed and soil in cancer metastasis. Int. J. Biochem. Cell Biol. 41, 1452–1462 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Shiao, S. L., Ganesan, A. P., Rugo, H. S. & Coussens, L. M. Immune microenvironments in solid tumors: new targets for therapy. Genes Dev. 25, 2559–2572 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ruffell, B. & Coussens, L. M. Histamine restricts cancer: nothing to sneeze at. Nature Med. 17, 43–44 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Demaria, S. et al. Cancer and inflammation: promise for biologic therapy. J. Immunother. 33, 335–351 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hart, I. R. & Fidler, I. J. Role of organ selectivity in the determination of metastatic patterns of B16 melanoma. Cancer Res. 40, 2281–2287 (1980).

    CAS  PubMed  Google Scholar 

  10. Teicher, B. A. et al. Tumor resistance to alkylating agents conferred by mechanisms operative only in vivo. Science 247, 1457–1461 (1990).

    Article  CAS  PubMed  Google Scholar 

  11. Fidler, I. J. et al. Modulation of tumor cell response to chemotherapy by the organ environment. Cancer Metastasis Rev. 13, 209–222 (1994).

    Article  CAS  PubMed  Google Scholar 

  12. Sethi, T. et al. Extracellular matrix proteins protect small cell lung cancer cells against apoptosis: a mechanism for small cell lung cancer growth and drug resistance in vivo. Nature Med. 5, 662–668 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Bhowmick, N. A., Neilson, E. G. & Moses, H. L. Stromal fibroblasts in cancer initiation and progression. Nature 432, 332–337 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Caligaris-Cappio, F. et al. Role of bone marrow stromal cells in the growth of human multiple myeloma. Blood 77, 2688–2693 (1991).

    CAS  PubMed  Google Scholar 

  15. Bhatia, R., McGlave, P. B., Dewald, G. W., Blazar, B. R. & Verfaillie, C. M. Abnormal function of the bone marrow microenvironment in chronic myelogenous leukemia: role of malignant stromal macrophages. Blood 85, 3636–3645 (1995).

    CAS  PubMed  Google Scholar 

  16. Hideshima, T. & Anderson, K. C. Molecular mechanisms of novel therapeutic approaches for multiple myeloma. Nature Rev. Cancer 2, 927–937 (2002).

    Article  CAS  Google Scholar 

  17. Cheung, H. W. et al. Systematic investigation of genetic vulnerabilities across cancer cell lines reveals lineage-specific dependencies in ovarian cancer. Proc. Natl Acad. Sci. USA 108, 12372–12377 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Barretina, J. et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483, 603–607 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Smith, S. C., Baras, A. S., Lee, J. K. & Theodorescu, D. The COXEN principle: translating signatures of in vitro chemosensitivity into tools for clinical outcome prediction and drug discovery in cancer. Cancer Res. 70, 1753–1758 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bissell, M. J., Radisky, D. C., Rizki, A., Weaver, V. M. & Petersen, O. W. The organizing principle: microenvironmental influences in the normal and malignant breast. Differentiation 70, 537–546 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Bissell, M. J., Kenny, P. A. & Radisky, D. C. Microenvironmental regulators of tissue structure and function also regulate tumor induction and progression: the role of extracellular matrix and its degrading enzymes. Cold Spring Harb. Symp. Quant. Biol. 70, 343–356 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nakasone, E. S. et al. Imaging tumor-stroma interactions during chemotherapy reveals contributions of the microenvironment to resistance. Cancer Cell 21, 488–503 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Debnath, J., Muthuswamy, S. K. & Brugge, J. S. Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods 30, 256–268 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Muranen, T. et al. Inhibition of PI3K/mTOR leads to adaptive resistance in matrix-attached cancer cells. Cancer Cell 21, 227–239 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. McMillin, D. W. et al. Tumor cell-specific bioluminescence platform to identify stroma-induced changes to anticancer drug activity. Nature Med. 16, 483–489 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. McMillin, D. W. et al. Microenvironmental influence on pre-clinical activity of polo-like kinase inhibition in multiple myeloma: implications for clinical translation. PLoS ONE 6, e20226 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Moshaver, B. et al. Chemotherapeutic treatment of bone marrow stromal cells strongly affects their protective effect on acute myeloid leukemia cell survival. Leuk. Lymphoma 49, 134–148 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Macanas-Pirard, P. et al. Bone marrow stromal cells modulate mouse ENT1 activity and protect leukemia cells from cytarabine induced apoptosis. PLoS ONE 7, e37203 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Guo-Bao, W. et al. Arsenic trioxide overcomes cell adhesion-mediated drug resistance through down-regulating the expression of β1-integrin in K562 chronic myelogenous leukemia cell line. Leuk. Lymphoma 51, 1090–1097 (2010).

    Article  PubMed  Google Scholar 

  30. Zhang, W. et al. Stromal control of cystine metabolism promotes cancer cell survival in chronic lymphocytic leukaemia. Nature Cell Biol. 14, 276–286 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Tabe, Y. et al. Role of stromal microenvironment in nonpharmacological resistance of CML to imatinib through Lyn/CXCR4 interactions in lipid rafts. Leukemia 26, 883–892 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Bewry, N. N. et al. Stat3 contributes to resistance toward BCR-ABL inhibitors in a bone marrow microenvironment model of drug resistance. Mol. Cancer Ther. 7, 3169–3175 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Schmidt, T. et al. Loss or inhibition of stromal-derived PlGF prolongs survival of mice with imatinib-resistant Bcr-Abl1+ leukemia. Cancer Cell 19, 740–753 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Liang, X. et al. Effects of bone marrow stromal cells and umbilical cord blood-derived stromal cells on daunorubicin-resistant residual Jurkat cells. Transplant Proc. 42, 3767–3772 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Manshouri, T. et al. Bone marrow stroma-secreted cytokines protect JAK2V617F-mutated cells from the effects of a JAK2 inhibitor. Cancer Res. 71, 3831–3840 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dudley, A. C., Shih, S. C., Cliffe, A. R., Hida, K. & Klagsbrun, M. Attenuated p53 activation in tumour-associated stromal cells accompanies decreased sensitivity to etoposide and vincristine. Br. J. Cancer 99, 118–125 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Flach, E. H., Rebecca, V. W., Herlyn, M., Smalley, K. S. & Anderson, A. R. Fibroblasts contribute to melanoma tumor growth and drug resistance. Mol. Pharm. 8, 2039–2049 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wilson, T. R. et al. Widespread potential for growth-factor-driven resistance to anticancer kinase inhibitors. Nature 487, 505–509 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Straussman, R. et al. Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature 487, 500–504 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chan, N. et al. Contextual synthetic lethality of cancer cell kill based on the tumor microenvironment. Cancer Res. 70, 8045–8054 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Alabaster, O., Woods, T., Ortiz-Sanchez, V. & Jahangeer, S. Influence of microenvironmental pH on adriamycin resistance. Cancer Res. 49, 5638–5643 (1989).

    CAS  PubMed  Google Scholar 

  42. Wojtkowiak, J. W., Verduzco, D., Schramm, K. J. & Gillies, R. J. Drug resistance and cellular adaptation to tumor acidic pH microenvironment. Mol. Pharm. 8, 2032–2038 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Negri, J. M. et al. In vitro anti-myeloma activity of the Aurora kinase inhibitor VE-465. Br. J. Haematol. 147, 672–676 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Brama, M. et al. Osteoblast-conditioned medium promotes proliferation and sensitizes breast cancer cells to imatinib treatment. Endocr. Relat. Cancer 14, 61–72 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Ni Chonghaile, T. et al. Pretreatment mitochondrial priming correlates with clinical response to cytotoxic chemotherapy. Science 334, 1129–1133 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Place, A. E., Jin Huh, S. & Polyak, K. The microenvironment in breast cancer progression: biology and implications for treatment. Breast Cancer Res. 13, 227 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Karnoub, A. E. et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449, 557–563 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Emmons, M. F. et al. Acquisition of resistance toward HYD1 correlates with a reduction in cleaved α4 integrin expression and a compromised CAM-DR phenotype. Mol. Cancer Ther. 10, 2257–2266 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Nefedova, Y., Landowski, T. H. & Dalton, W. S. Bone marrow stromal-derived soluble factors and direct cell contact contribute to de novo drug resistance of myeloma cells by distinct mechanisms. Leukemia 17, 1175–1182 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Matallanas, D. & Crespo, P. New druggable targets in the Ras pathway? Curr. Opin. Mol. Ther. 12, 674–683 (2010).

    CAS  PubMed  Google Scholar 

  51. Pylayeva-Gupta, Y., Grabocka, E. & Bar-Sagi, D. RAS oncogenes: weaving a tumorigenic web. Nature Rev. Cancer 11, 761–774 (2011).

    Article  CAS  Google Scholar 

  52. Courtois, G. & Gilmore, T. D. Mutations in the NF-κB signaling pathway: implications for human disease. Oncogene 25, 6831–6843 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Perkins, N. D. The diverse and complex roles of NF-κB subunits in cancer. Nature Rev. Cancer 12, 121–132 (2012).

    Article  CAS  Google Scholar 

  54. Santarpia, L., Lippman, S. M. & El-Naggar, A. K. Targeting the MAPK–RAS–RAF signaling pathway in cancer therapy. Expert Opin. Ther. Targets 16, 103–119 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Beroukhim, R. et al. The landscape of somatic copy-number alteration across human cancers. Nature 463, 899–905 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Toyoshima, M. et al. Functional genomics identifies therapeutic targets for MYC-driven cancer. Proc. Natl Acad. Sci. USA 109, 9545–9550 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kastrinaki, M. C. et al. Biologic characteristics of bone marrow mesenchymal stem cells in myelodysplastic syndromes. Curr. Stem Cell Res. Ther. 6, 122–130 (2011).

    Article  CAS  PubMed  Google Scholar 

  58. Scielzo, C. et al. How the microenvironment shapes chronic lymphocytic leukemia: the cytoskeleton connection. Leuk. Lymphoma 51, 1371–1374 (2010).

    Article  PubMed  Google Scholar 

  59. Nicolson, G. L. Generation of phenotypic diversity and progression in metastatic tumor cells. Cancer Metastasis Rev. 3, 25–42 (1984).

    Article  CAS  PubMed  Google Scholar 

  60. McCullough, K. D. et al. Plasticity of the neoplastic phenotype in vivo is regulated by epigenetic factors. Proc. Natl Acad. Sci. USA 95, 15333–15338 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Chrenek, M. A., Wong, P. & Weaver, V. M. Tumour-stromal interactions. Integrins and cell adhesions as modulators of mammary cell survival and transformation. Breast Cancer Res. 3, 224–229 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Denko, N. et al. Epigenetic regulation of gene expression in cervical cancer cells by the tumor microenvironment. Clin. Cancer Res. 6, 480–487 (2000).

    CAS  PubMed  Google Scholar 

  63. Hu, M. et al. Distinct epigenetic changes in the stromal cells of breast cancers. Nature Genet. 37, 899–905 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Dumont, N. et al. Sustained induction of epithelial to mesenchymal transition activates DNA methylation of genes silenced in basal-like breast cancers. Proc. Natl Acad. Sci. USA 105, 14867–14872 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Weisberg, E. et al. Discovery and characterization of novel mutant FLT3 kinase inhibitors. Mol. Cancer Ther. 9, 2468–2477 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Dolberg, D. S., Hollingsworth, R., Hertle, M. & Bissell, M. J. Wounding and its role in RSV-mediated tumor formation. Science 230, 676–678 (1985).

    Article  CAS  PubMed  Google Scholar 

  67. Sieweke, M. H. & Bissell, M. J. The tumor-promoting effect of wounding: a possible role for TGF-β-induced stromal alterations. Crit. Rev. Oncog. 5, 297–311 (1994).

    Article  CAS  PubMed  Google Scholar 

  68. Sieweke, M. H., Stoker, A. W. & Bissell, M. J. Evaluation of the cocarcinogenic effect of wounding in Rous sarcoma virus tumorigenesis. Cancer Res. 49, 6419–6424 (1989).

    CAS  PubMed  Google Scholar 

  69. Martins-Green, M., Boudreau, N. & Bissell, M. J. Inflammation is responsible for the development of wound-induced tumors in chickens infected with Rous sarcoma virus. Cancer Res. 54, 4334–4341 (1994).

    CAS  PubMed  Google Scholar 

  70. Coussens, L. M. & Werb, Z. Inflammation and cancer. Nature 420, 860–867 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Li, N., Grivennikov, S. I. & Karin, M. The unholy trinity: inflammation, cytokines, and STAT3 shape the cancer microenvironment. Cancer Cell 19, 429–431 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Balkwill, F. & Coussens, L. M. Cancer: an inflammatory link. Nature 431, 405–406 (2004).

    Article  CAS  PubMed  Google Scholar 

  73. Uchiyama, H., Barut, B. A., Chauhan, D., Cannistra, S. A. & Anderson, K. C. Characterization of adhesion molecules on human myeloma cell lines. Blood 80, 2306–2314 (1992).

    CAS  PubMed  Google Scholar 

  74. Lynch, C. C. Matrix metalloproteinases as master regulators of the vicious cycle of bone metastasis. Bone 48, 44–53 (2011).

    Article  CAS  PubMed  Google Scholar 

  75. Kola, I. The state of innovation in drug development. Clin. Pharmacol. Ther. 83, 227–230 (2008).

    Article  CAS  PubMed  Google Scholar 

  76. Kola, I. & Landis, J. Can the pharmaceutical industry reduce attrition rates? Nature Rev. Drug Discov. 3, 711–715 (2004).

    Article  CAS  Google Scholar 

  77. DiMasi, J. A. & Grabowski, H. G. Economics of new oncology drug development. J. Clin. Oncol. 25, 209–216 (2007).

    Article  PubMed  Google Scholar 

  78. Gillet, J. P. et al. Redefining the relevance of established cancer cell lines to the study of mechanisms of clinical anti-cancer drug resistance. Proc. Natl Acad. Sci. USA 108, 18708–18713 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Singh, M. & Ferrara, N. Modeling and predicting clinical efficacy for drugs targeting the tumor milieu. Nature Biotech. 30, 648–657 (2012).

    Article  CAS  Google Scholar 

  80. Gupta, G. P. & Massague, J. Cancer metastasis: building a framework. Cell 127, 679–695 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Steeg, P. S. Tumor metastasis: mechanistic insights and clinical challenges. Nature Med. 12, 895–904 (2006).

    Article  CAS  PubMed  Google Scholar 

  82. Valastyan, S. & Weinberg, R. A. Tumor metastasis: molecular insights and evolving paradigms. Cell 147, 275–292 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Sleeman, J. P. The metastatic niche and stromal progression. Cancer Metastasis Rev. 31, 429–440 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Singh, M. et al. Anti-VEGF antibody therapy does not promote metastasis in genetically engineered mouse tumour models. J. Pathol. 227, 417–430 (2012).

    Article  CAS  PubMed  Google Scholar 

  85. Francia, G., Cruz-Munoz, W., Man, S., Xu, P. & Kerbel, R. S. Mouse models of advanced spontaneous metastasis for experimental therapeutics. Nature Rev. Cancer 11, 135–141 (2011).

    Article  CAS  Google Scholar 

  86. Hung, K. E. et al. Development of a mouse model for sporadic and metastatic colon tumors and its use in assessing drug treatment. Proc. Natl Acad. Sci. USA 107, 1565–1570 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Goss, P. E. & Chambers, A. F. Does tumour dormancy offer a therapeutic target? Nature Rev. Cancer 10, 871–877 (2010).

    Article  CAS  Google Scholar 

  88. Mitsiades, C. S. et al. Inhibition of the insulin-like growth factor receptor-1 tyrosine kinase activity as a therapeutic strategy for multiple myeloma, other hematologic malignancies, and solid tumors. Cancer Cell 5, 221–230 (2004).

    Article  CAS  PubMed  Google Scholar 

  89. Delmore, J. E. et al. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell 146, 904–917 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Chesi, M. et al. AID-dependent activation of a MYC transgene induces multiple myeloma in a conditional mouse model of post-germinal center malignancies. Cancer Cell 13, 167–180 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Chesi, M. et al. Drug response in a genetically engineered mouse model of multiple myeloma is predictive of clinical efficacy. Blood 120, 376–385 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Stubbs, M. C. et al. MLL-AF9 and FLT3 cooperation in acute myelogenous leukemia: development of a model for rapid therapeutic assessment. Leukemia 22, 66–77 (2008).

    Article  CAS  PubMed  Google Scholar 

  93. Kuperwasser, C. et al. A mouse model of human breast cancer metastasis to human bone. Cancer Res. 65, 6130–6138 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. Gomes, R. R. Jr., Buttke, P., Paul, E. M. & Sikes, R. A. Osteosclerotic prostate cancer metastasis to murine bone are enhanced with increased bone formation. Clin. Exp. Metastasis 26, 641–651 (2009).

    Article  CAS  PubMed  Google Scholar 

  95. Sasaki, A. et al. Bisphosphonate risedronate reduces metastatic human breast cancer burden in bone in nude mice. Cancer Res. 55, 3551–3557 (1995).

    CAS  PubMed  Google Scholar 

  96. Peyruchaud, O. et al. Early detection of bone metastases in a murine model using fluorescent human breast cancer cells: application to the use of the bisphosphonate zoledronic acid in the treatment of osteolytic lesions. J. Bone Miner. Res. 16, 2027–2034 (2001).

    Article  CAS  PubMed  Google Scholar 

  97. Ibrahim, A. et al. Approval summary for zoledronic acid for treatment of multiple myeloma and cancer bone metastases. Clin. Cancer Res. 9, 2394–2399 (2003).

    CAS  PubMed  Google Scholar 

  98. Smith, M. R. et al. Denosumab and bone-metastasis-free survival in men with castration-resistant prostate cancer: results of a phase 3, randomised, placebo-controlled trial. Lancet 379, 39–46 (2012).

    Article  CAS  PubMed  Google Scholar 

  99. Cruickshanks, N. et al. Lapatinib and obatoclax kill tumor cells through blockade of ERBB1/3/4 and through inhibition of BCL-XL and MCL-1. Mol. Pharmacol. 81, 748–758 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kadoch, C. et al. Pathologic correlates of primary central nervous system lymphoma defined in an orthotopic xenograft model. Clin. Cancer Res. 15, 1989–1997 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Hoffmann, J. et al. Sagopilone crosses the blood–brain barrier in vivo to inhibit brain tumor growth and metastases. Neuro Oncol. 11, 158–166 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Cruz-Munoz, W., Man, S., Xu, P. & Kerbel, R. S. Development of a preclinical model of spontaneous human melanoma central nervous system metastasis. Cancer Res. 68, 4500–4505 (2008).

    Article  CAS  PubMed  Google Scholar 

  103. Brigger, I. et al. Negative preclinical results with stealth nanospheres-encapsulated doxorubicin in an orthotopic murine brain tumor model. J. Control Release 100, 29–40 (2004).

    Article  CAS  PubMed  Google Scholar 

  104. Weisberg, E. et al. Potentiation of antileukemic therapies by Smac mimetic, LBW242: effects on mutant FLT3-expressing cells. Mol. Cancer Ther. 6, 1951–1961 (2007).

    Article  CAS  PubMed  Google Scholar 

  105. van Rhee, F. et al. Siltuximab, a novel anti-interleukin-6 monoclonal antibody, for Castleman's disease. J. Clin. Oncol. 28, 3701–3708 (2010).

    Article  CAS  PubMed  Google Scholar 

  106. Dijkgraaf, E. M., Welters, M. J., Nortier, J. W., van der Burg, S. H. & Kroep, J. R. Interleukin-6/interleukin-6 receptor pathway as a new therapy target in ovarian cancer. Curr. Pharm. Des. 18, 3816–3827 (2012).

    Article  CAS  PubMed  Google Scholar 

  107. Stone, R. L. et al. Paraneoplastic thrombocytosis in ovarian cancer. N. Engl. J. Med. 366, 610–618 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Hudes, G. et al. A phase 1 study of a chimeric monoclonal antibody against interleukin-6, siltuximab, combined with docetaxel in patients with metastatic castration-resistant prostate cancer. Invest. New Drugs 25 Jul 2012 (doi:10.1007/s10637-012-9857-z).

    Article  CAS  PubMed  Google Scholar 

  109. Tawara, K., Oxford, J. T. & Jorcyk, C. L. Clinical significance of interleukin (IL)-6 in cancer metastasis to bone: potential of anti-IL-6 therapies. Cancer Manag. Res. 3, 177–189 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Spencer, T. E., Johnson, G. A., Bazer, F. W. & Burghardt, R. C. Implantation mechanisms: insights from the sheep. Reproduction 128, 657–668 (2004).

    Article  CAS  PubMed  Google Scholar 

  111. Silva, R., D'Amico, G., Hodivala-Dilke, K. M. & Reynolds, L. E. Integrins: the keys to unlocking angiogenesis. Arterioscler. Thromb. Vasc. Biol. 28, 1703–1713 (2008).

    Article  CAS  PubMed  Google Scholar 

  112. Smith-Garvin, J. E., Koretzky, G. A. & Jordan, M. S. T cell activation. Annu. Rev. Immunol. 27, 591–619 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Pillay, V., Gan, H. K. & Scott, A. M. Antibodies in oncology. N. Biotechnol. 28, 518–529 (2011).

    Article  CAS  PubMed  Google Scholar 

  114. Guise, T. Examining the metastatic niche: targeting the microenvironment. Semin. Oncol. 37 (Suppl. 2), 2–14 (2010).

    Article  CAS  Google Scholar 

  115. Leader, B., Baca, Q. J. & Golan, D. E. Protein therapeutics: a summary and pharmacological classification. Nature Rev. Drug Discov. 7, 21–39 (2008).

    Article  CAS  Google Scholar 

  116. Garnett, M. J. et al. Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature 483, 570–575 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Lynch, T. J. et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 350, 2129–2139 (2004).

    Article  CAS  PubMed  Google Scholar 

  118. Kwak, E. L. et al. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N. Engl. J. Med. 363, 1693–1703 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Saintigny, P. & Burger, J. A. Recent advances in non-small cell lung cancer biology and clinical management. Discov. Med. 13, 287–297 (2012).

    PubMed  Google Scholar 

  120. Curigliano, G. New drugs for breast cancer subtypes: targeting driver pathways to overcome resistance. Cancer Treat. Rev. 38, 303–310 (2012).

    Article  CAS  PubMed  Google Scholar 

  121. Quintas-Cardama, A., Kantarjian, H. & Cortes, J. Third-generation tyrosine kinase inhibitors and beyond. Semin. Hematol. 47, 371–380 (2010).

    Article  CAS  PubMed  Google Scholar 

  122. Essmann, F. & Schulze-Osthoff, K. Translational approaches targeting the p53 pathway for anti-cancer therapy. Br. J. Pharmacol. 165, 328–344 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Yokota, T. Are KRAS/BRAF mutations potent prognostic and/or predictive biomarkers in colorectal cancers? Anticancer Agents Med. Chem. 12, 163–171 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Shi, H. et al. Melanoma whole-exome sequencing identifies V600EB-RAF amplification-mediated acquired B-RAF inhibitor resistance. Nature Commun. 3, 724 (2012).

    Article  CAS  Google Scholar 

  125. Poulikakos, P. I. et al. RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF(V600E). Nature 480, 387–390 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Johannessen, C. M. et al. COT drives resistance to RAF inhibition through MAP kinase pathway reactivation. Nature 468, 968–972 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Nazarian, R. et al. Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature 468, 973–977 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Bissell, M. J. & Radisky, D. Putting tumours in context. Nature Rev. Cancer 1, 46–54 (2001).

    Article  CAS  Google Scholar 

  129. Bissell, M. J. & Hines, W. C. Why don't we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nature Med. 17, 320–329 (2011).

    Article  CAS  PubMed  Google Scholar 

  130. DeNardo, D. G., Andreu, P. & Coussens, L. M. Interactions between lymphocytes and myeloid cells regulate pro- versus anti-tumor immunity. Cancer Metastasis Rev. 29, 309–316 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Zitvogel, L. & Kroemer, G. Anticancer immunochemotherapy using adjuvants with direct cytotoxic effects. J. Clin. Invest. 119, 2127–2130 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Zitvogel, L. et al. The anticancer immune response: indispensable for therapeutic success? J. Clin. Invest. 118, 1991–2001 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Zitvogel, L., Kepp, O. & Kroemer, G. Immune parameters affecting the efficacy of chemotherapeutic regimens. Nature Rev. Clin. Oncol. 8, 151–160 (2011).

    Article  CAS  Google Scholar 

  134. McMillin, D. W. et al. Compartment-specific bioluminescence imaging platform for the high-throughput evaluation of antitumor immune function. Blood 119, e131–e138 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Shultz, L. D., Ishikawa, F. & Greiner, D. L. Humanized mice in translational biomedical research. Nature Rev. Immunol. 7, 118–130 (2007).

    Article  CAS  Google Scholar 

  136. Ito, R., Takahashi, T., Katano, I. & Ito, M. Current advances in humanized mouse models. Cell. Mol. Immunol. 9, 208–214 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Devoy, A., Bunton-Stasyshyn, R. K., Tybulewicz, V. L., Smith, A. J. & Fisher, E. M. Genomically humanized mice: technologies and promises. Nature Rev. Genet. 13, 14–20 (2012).

    Article  CAS  Google Scholar 

  138. Groen, R. W. et al. Reconstructing the human hematopoietic niche in immunodeficient mice: opportunities for studying primary multiple myeloma. Blood 120, e9–e16 (2012).

    Article  CAS  PubMed  Google Scholar 

  139. Richardson, P. G. et al. Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. N. Engl. J. Med. 352, 2487–2498 (2005).

    Article  CAS  PubMed  Google Scholar 

  140. Lane, S. W., Gill, D., Mollee, P. N. & Rajkumar, S. V. Role of VAD in the initial treatment of multiple myeloma. Blood 106, 3674; author reply 3674–3675 (2005).

    Article  CAS  PubMed  Google Scholar 

  141. Stassi, G. et al. Thyroid cancer resistance to chemotherapeutic drugs via autocrine production of interleukin-4 and interleukin-10. Cancer Res. 63, 6784–6790 (2003).

    CAS  PubMed  Google Scholar 

  142. Nagaiah, G., Hossain, A., Mooney, C. J., Parmentier, J. & Remick, S. C. Anaplastic thyroid cancer: a review of epidemiology, pathogenesis, and treatment. J. Oncol. 2011, 542358 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Bollag, G. et al. Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature 467, 596–599 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Chapman, P. B. et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N. Engl. J. Med. 364, 2507–2516 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Flaherty, K. T. et al. Inhibition of mutated, activated BRAF in metastatic melanoma. N. Engl. J. Med. 363, 809–819 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Sosman, J. A. et al. Survival in BRAF V600- mutant advanced melanoma treated with vemurafenib. N. Engl. J. Med. 366, 707–714 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Tefferi, A. Challenges facing JAK inhibitor therapy for myeloproliferative neoplasms. N. Engl. J. Med. 366, 844–846 (2012).

    Article  CAS  PubMed  Google Scholar 

  148. Kaelin, W. G. Jr. The concept of synthetic lethality in the context of anticancer therapy. Nature Rev. Cancer 9, 689–698 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank A. L. Kung and N. S. Gray for their suggestions during the preparation of this manuscript. This study was supported by the US National Institutes of Health (grant RO1-50947 to C.S.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Constantine S. Mitsiades.

Ethics declarations

Competing interests

D.W.M. is an equity holder in Axios Biosciences.

C.S.M. has received consultant honouraria from Millennium, Celgene, Novartis, Bristol-Myers Squibb, Merck & Co., Kosan, Pharmion, Centocor and Arno Therapeutics; licensing royalties from PharmaMar; research funding from Amgen, AVEO Pharma, OSI, EMD Serono, Sunesis, Gloucester Pharmaceuticals, Genzyme and Johnson & Johnson; and serves as a pro bono scientific advisor for Axios Biosciences.

J.M.N. declares no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Constantine S. Mitsiades' homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

McMillin, D., Negri, J. & Mitsiades, C. The role of tumour–stromal interactions in modifying drug response: challenges and opportunities. Nat Rev Drug Discov 12, 217–228 (2013). https://doi.org/10.1038/nrd3870

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd3870

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer