Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Immune therapy in type 1 diabetes mellitus

Abstract

Type 1 diabetes mellitus (T1DM) is an autoimmune disorder directed against the β cells of the pancreatic islets. The genetic risk of the disease is linked to HLA-DQ risk alleles and unknown environmental triggers. In most countries, only 10–15% of children or young adults newly diagnosed with T1DM have a first-degree relative with the disease. Autoantibodies against insulin, GAD65, IA-2 or the ZnT8 transporter mark islet autoimmunity. These islet autoantibodies may already have developed in children of 1–3 years of age. Immune therapy in T1DM is approached at three different stages. Primary prevention is treatment of individuals at increased genetic risk. For example, one trial is testing if hydrolyzed casein milk formula reduces T1DM incidence in genetically predisposed infants. Secondary prevention is targeted at individuals with persistent islet autoantibodies. Ongoing trials involve nonautoantigen-specific therapies, such as Bacillus Calmette–Guérin vaccine or anti-CD3 monoclonal antibodies, or autoantigen-specific therapies, including oral and nasal insulin or alum-formulated recombinant human GAD65. Trial interventions at onset of T1DM have also included nonautoantigen-specific approaches, and autoantigen-specific therapies, such as proinsulin peptides. Although long-term preservation of β-cell function has been difficult to achieve in many studies, considerable progress is being made through controlled clinical trials and animal investigations towards uncovering mechanisms of β-cell destruction. Novel therapies that prevent islet autoimmunity or halt progressive β-cell destruction are needed.

Key Points

  • As an autoimmune disease, type 1 diabetes mellitus (T1DM) is strongly associated with mutations in HLA-DQ risk alleles; non-HLA genes contributing to disease risk are related to the immune system

  • Autoantibodies to the β-cell autoantigens insulin, GAD65, IA-2 and the ZnT8 transporter are major markers of islet autoimmunity; the number of islet autoantibodies determines risk and time to T1DM clinical onset

  • Immune therapy for T1DM is approached at three stages: primary prevention, secondary prevention and intervention

  • Primary prevention requires identification of newborn babies at increased genetic risk of T1DM; induction of immunological tolerance to islet autoantigens is a goal, but is difficult to measure

  • Nonautoantigen-specific or autoantigen-specific interventions can be used at the secondary prevention stage in individuals who have developed persistent islet autoantibodies; combination therapies have yet to be carried out

  • Immune therapy interventions at onset of T1DM can involve both nonautoantigen-specific and autoantigen-specific therapies; the most common primary outcome in clinical studies and trials is the preservation of C-peptide levels

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Representation of type 1 diabetes mellitus aetiology and pathogenesis, which indicates the points at which primary prevention, secondary prevention or intervention can be attempted.
Figure 2: Survival distribution function in relation to the number of islet autoantibodies.
Figure 3: β-cell control of blood glucose varies markedly between children with at least two islet autoantibodies.
Figure 4: The figure depicts the immunological synapses involved in the processing of an antigen by an antigen-presenting cell.

Similar content being viewed by others

References

  1. Hirsch, I. B. Insulin analogues. N. Engl. J. Med. 352, 174–183 (2005).

    Article  CAS  Google Scholar 

  2. Steenkiste, A. et al. 14th International HLA and Immunogenetics Workshop: report on the HLA component of type 1 diabetes. Tissue Antigens 69 (Suppl. 1), 214–225 (2007).

    Article  CAS  Google Scholar 

  3. Concannon, P., Rich, S. S. & Nepom, G. T. Genetics of type 1A diabetes. N. Engl. J. Med. 360, 1646–1654 (2009).

    Article  CAS  Google Scholar 

  4. La Torre, D. & Lernmark, A. Immunology of β-cell destruction. Adv. Exp. Med. Biol. 654, 537–583 (2010).

    Article  CAS  Google Scholar 

  5. Pihoker, C., Gilliam, L. K., Hampe, C. S. & Lernmark, A. Autoantibodies in diabetes. Diabetes 54 (Suppl. 2), 52–61 (2005).

    Article  Google Scholar 

  6. Lernmark, A. et al. The Fourth International Serum Exchange Workshop to standardize cytoplasmic islet cell antibodies. The Immunology and Diabetes Workshops and Participating Laboratories. Diabetologia 34, 534–535 (1991).

    Article  CAS  Google Scholar 

  7. Törn, C. et al. Diabetes Antibody Standardization Program: evaluation of assays for autoantibodies to glutamic acid decarboxylase and islet antigen-2. Diabetologia 51, 846–852 (2008).

    Article  Google Scholar 

  8. Bonifacio, E. et al. Harmonization of glutamic acid decarboxylase and islet antigen-2 autoantibody assays for national institute of diabetes and digestive and kidney diseases consortia. J. Clin. Endocrinol. Metab. 95, 3360–3367 (2010).

    Article  CAS  Google Scholar 

  9. Mallone, R., Brezar, V. & Boitard, C. T cell recognition of autoantigens in human type 1 diabetes: clinical perspectives. Clin. Dev. Immunol. 2011, 513210 (2011).

    Article  Google Scholar 

  10. Orban, T. et al. Pancreatic islet autoantibodies as predictors of type 1 diabetes in the Diabetes Prevention Trial-Type 1. Diabetes Care 32, 2269–2274 (2009).

    Article  Google Scholar 

  11. Barker, J. M. et al. Prediction of autoantibody positivity and progression to type 1 diabetes: Diabetes Autoimmunity Study in the Young (DAISY). J. Clin. Endocrinol. Metab. 89, 3896–3902 (2004).

    Article  CAS  Google Scholar 

  12. Elding Larsson, H. et al. Reduced prevalence of diabetic ketoacidosis at diagnosis of type 1 diabetes in young children participating in longitudinal follow-up. Diabetes Care 34, 2347–2352 (2011).

    Article  Google Scholar 

  13. Wallensteen, M. et al. Factors influencing the magnitude, duration, and rate of fall of B-cell function in type 1 (insulin-dependent) diabetic children followed for two years from their clinical diagnosis. Diabetologia 31, 664–669 (1988).

    Article  CAS  Google Scholar 

  14. Bach, J. F. & Chatenoud, L. A historical view from thirty eventful years of immunotherapy in autoimmune diabetes. Semin. Immunol. 23, 174–181 (2011).

    Article  Google Scholar 

  15. Greenbaum, C. J., Schatz, D. A., Haller, M. J. & Sanda, S. Through the fog: recent clinical trials to preserve beta-cell function in type 1 diabetes. Diabetes 61, 1323–1330 (2012).

    Article  CAS  Google Scholar 

  16. Knip, M. et al. Early feeding and risk of type 1 diabetes: experiences from the Trial to Reduce Insulin-dependent diabetes mellitus in the Genetically at Risk (TRIGR). Am. J. Clin. Nutr. 94 (Suppl. 6), 1814–1820 (2011).

    Google Scholar 

  17. Knip, M. et al. Dietary intervention in infancy and later signs of β-cell autoimmunity. N. Engl. J. Med. 363, 1900–1908 (2010).

    Article  CAS  Google Scholar 

  18. Wicklow, B. A. & Taback, S. P. Feasibility of a type 1 diabetes primary prevention trial using 2000 IU vitamin D3 in infants from the general population with increased HLA-associated risk. Ann. NY Acad. Sci. 1079, 310–312 (2006).

    Article  CAS  Google Scholar 

  19. Bock, G. et al. The effect of vitamin D supplementation on peripheral regulatory T cells and β cell function in healthy humans: a randomized controlled trial. Diabetes Metab. Res. Rev. 27, 942–945 (2011).

    Article  CAS  Google Scholar 

  20. Sørensen, I. M. et al. Maternal serum levels of 25-hydroxy-vitamin D during pregnancy and risk of type 1 diabetes in the offspring. Diabetes 61, 175–178 (2012).

    Article  Google Scholar 

  21. Stene, L. C. & Joner, G. Use of cod liver oil during the first year of life is associated with lower risk of childhood-onset type 1 diabetes: a large, population-based, case–control study. Am. J. Clin. Nutr. 78, 1128–1134 (2003).

    Article  CAS  Google Scholar 

  22. Chase, H. P. et al. Nutritional Intervention to Prevent (NIP) Type 1 Diabetes: a pilot trial. Infant Child. Adolesc. Nutr. 1, 98–107 (2009).

    Article  Google Scholar 

  23. Hagopian, W. A. et al. TEDDY—The Environmental Determinants of Diabetes in the Young: an observational clinical trial. Ann. NY Acad. Sci. 1079, 320–326 (2006).

    Article  Google Scholar 

  24. Hagopian, W. A. et al. The Environmental Determinants of Diabetes in the Young (TEDDY): genetic criteria and international diabetes risk screening of 421000 infants. Pediatr. Diabetes 12, 733–743 (2011).

    Article  Google Scholar 

  25. Achenbach, P., Barker, J. & Bonifacio, E. Modulating the natural history of type 1 diabetes in children at high genetic risk by mucosal insulin immunization. Curr. Diab. Rep. 8, 87–93 (2008).

    Article  CAS  Google Scholar 

  26. Diabetes Prevention Trial—Type 1 Diabetes Study Group. Effects of insulin in relatives of patients with type 1 diabetes mellitus. N. Engl. J. Med. 346, 1685–1691 (2002).

  27. Andersson, C. et al. The three ZNT8 autoantibody variants together improve the diagnostic sensitivity of childhood and adolescent type 1 diabetes. Autoimmunity 44, 394–405 (2011).

    Article  CAS  Google Scholar 

  28. Carel, J. C., Boitard, C., Eisenbarth, G., Bach, J. F. & Bougneres, P. F. Cyclosporine delays but does not prevent clinical onset in glucose intolerant pre-type 1 diabetic children. J. Autoimmun. 9, 739–745 (1996).

    Article  CAS  Google Scholar 

  29. Huppmann, M., Baumgarten, A., Ziegler, A. G. & Bonifacio, E. Neonatal Bacille Calmette-Guerin vaccination and type 1 diabetes. Diabetes Care 28, 1204–1206 (2005).

    Article  Google Scholar 

  30. Bohmer, K. P. et al. Linear loss of insulin secretory capacity during the last six months preceding IDDM. No effect of antiedematous therapy with ketotifen. Diabetes Care 17, 138–141 (1994).

    Article  CAS  Google Scholar 

  31. Gale, E. A., Bingley, P. J., Emmett, C. L. & Collier, T. European Nicotinamide Diabetes Intervention Trial (ENDIT): a randomised controlled trial of intervention before the onset of type 1 diabetes. Lancet 363, 925–931 (2004).

    Article  CAS  Google Scholar 

  32. Lampeter, E. F. et al. The Deutsche Nicotinamide Intervention Study: an attempt to prevent type 1 diabetes. DENIS Group. Diabetes 47, 980–984 (1998).

    Article  CAS  Google Scholar 

  33. Ziegler, A. G., Schmid, S., Huber, D., Hummel, M. & Bonifacio, E. Early infant feeding and risk of developing type 1 diabetes-associated autoantibodies. JAMA 290, 1721–1728 (2003).

    Article  CAS  Google Scholar 

  34. Norris, J. M. et al. Timing of initial cereal exposure in infancy and risk of islet autoimmunity. JAMA 290, 1713–1720 (2003).

    Article  CAS  Google Scholar 

  35. Hummel, S., Pfülger, M., Hummel, M., Bonifacio, E. & Ziegler, A. G. Primary dietary intervention study to reduce the risk of islet autoimmunity in children at increased risk for type 1 diabetes: the BABYDIET study. Diabetes Care 34, 1301–1305 (2011).

    Article  Google Scholar 

  36. Keller, R. J., Eisenbarth, G. S. & Jackson, R. A. Insulin prophylaxis in individuals at high risk of type I diabetes. Lancet 341, 927–928 (1993).

    Article  CAS  Google Scholar 

  37. Pugliese, A. et al. HLA-DQB1*0602 is associated with dominant protection from diabetes even among islet cell antibody-positive first-degree relatives of patients with IDDM. Diabetes 44, 608–613 (1995).

    Article  CAS  Google Scholar 

  38. Skyler, J. S. et al. Effects of oral insulin in relatives of patients with type 1 diabetes: The Diabetes Prevention Trial--Type 1. Diabetes Care 28, 1068–1076 (2005).

    Article  CAS  Google Scholar 

  39. Vehik, K. et al. Long-term outcome of individuals treated with oral insulin: diabetes prevention trial-type 1 (DPT-1) oral insulin trial. Diabetes Care 34, 1585–1590 (2011).

    Article  Google Scholar 

  40. Harrison, L. C. et al. Pancreatic beta-cell function and immune responses to insulin after administration of intranasal insulin to humans at risk for type 1 diabetes. Diabetes Care 27, 2348–2355 (2004).

    Article  CAS  Google Scholar 

  41. Näntö-Salonen, K. et al. Nasal insulin to prevent type 1 diabetes in children with HLA genotypes and autoantibodies conferring increased risk of disease: a double-blind, randomised controlled trial. Lancet 372, 1746–1755 (2008).

    Article  Google Scholar 

  42. Ryhänen, S. J. et al. Impact of intranasal insulin on insulin antibody affinity and isotypes in young children with HLA-conferred susceptibility to type 1 diabetes. Diabetes Care 34, 1383–1388 (2011).

    Article  Google Scholar 

  43. Agardh, C. D. et al. Clinical evidence for the safety of GAD65 immunomodulation in adult-onset autoimmune diabetes. J. Diabetes Complications 19, 238–246 (2005).

    Article  Google Scholar 

  44. Agardh, C. D., Lynch, K. F., Palmer, M., Link, K. & Lernmark, A. GAD65 vaccination: 5 years of follow-up in a randomised dose-escalating study in adult-onset autoimmune diabetes. Diabetologia 52, 1363–1368 (2009).

    Article  CAS  Google Scholar 

  45. Ludvigsson, J. et al. GAD treatment and insulin secretion in recent-onset type 1 diabetes. N. Engl. J. Med. 359, 1909–1920 (2008).

    Article  CAS  Google Scholar 

  46. Wherrett, D. K. et al. Antigen-based therapy with glutamic acid decarboxylase (GAD) vaccine in patients with recent-onset type 1 diabetes: a randomised double-blind trial. Lancet 378, 319–327 (2011).

    Article  CAS  Google Scholar 

  47. Leslie, R. D. G. & Pyke, D. A. in Immunology of Diabetes (ed. Irvine, J.) 345–347 (Teviot Scientific Publications, Edinburgh, 1980).

    Google Scholar 

  48. Skyler, J. S. Immune intervention studies in insulin-dependent diabetes mellitus. Diabetes Metab. Rev. 3, 1017–1035 (1987).

    Article  CAS  Google Scholar 

  49. Ludvigsson, J., Heding, L. G., Larsson, Y. & Leander, E. C-peptide in juvenile diabetics beyond the postinitial remission period. Relation to clinical manifestations at onset of diabetes, remission and diabetic control. Acta Paediatr. Scand. 66, 177–184 (1977).

    Article  CAS  Google Scholar 

  50. Rodriquez, H. et al. The prevention of diabetes progression trial (PDPT): preservation of beta-cell function using daclizumab in new onset type diabetes. Pediatric Diabetes 7 (Suppl. S5), 58–O3 (2006).

    Google Scholar 

  51. Waldron-Lynch, F. & Herold, K. C. Immunomodulatory therapy to preserve pancreatic beta-cell function in type 1 diabetes. Nat. Rev. Drug Discov. 10, 439–452 (2011).

    Article  CAS  Google Scholar 

  52. Keymeulen, B. et al. Four-year metabolic outcome of a randomised controlled CD3-antibody trial in recent-onset type 1 diabetic patients depends on their age and baseline residual beta cell mass. Diabetologia 53, 614–623 (2010).

    Article  CAS  Google Scholar 

  53. Keymeulen, B. et al. Insulin needs after CD3-antibody therapy in new-onset type 1 diabetes. N. Engl. J. Med. 352, 2598–2608 (2005).

    Article  CAS  Google Scholar 

  54. Herold, K. C. et al. Treatment of patients with new onset type 1 diabetes with a single course of anti-CD3 mAb teplizumab preserves insulin production for up to 5 years. Clin. Immunol. 132, 166–173 (2009).

    Article  CAS  Google Scholar 

  55. Herold, K. C. et al. Anti-CD3 monoclonal antibody in new-onset type 1 diabetes mellitus. N. Engl. J. Med. 346, 1692–1698 (2002).

    Article  CAS  Google Scholar 

  56. Herold, K. C. et al. A single course of anti-CD3 monoclonal antibody hOKT3γ1(Ala-Ala) results in improvement in C-peptide responses and clinical parameters for at least 2 years after onset of type 1 diabetes. Diabetes 54, 1763–1769 (2005).

    Article  CAS  Google Scholar 

  57. Larsson, H. E. & Lernmark, A. Vaccination against type 1 diabetes. J. Intern. Med. 269, 626–635 (2011).

    Article  CAS  Google Scholar 

  58. Sherry, N. et al. Teplizumab for treatment of type 1 diabetes (Protégé study): 1-year results from a randomised, placebo-controlled trial. Lancet 378, 487–497 (2011).

    Article  CAS  Google Scholar 

  59. Cernea, S. & Herold, K. C. Monitoring of antigen-specific CD8 T cells in patients with type 1 diabetes treated with antiCD3 monoclonal antibodies. Clin. Immunol. 134, 121–129 (2010).

    Article  CAS  Google Scholar 

  60. Pescovitz, M. D. et al. Rituximab, B-lymphocyte depletion, and preservation of beta-cell function. N. Engl. J. Med. 361, 2143–2152 (2009).

    Article  CAS  Google Scholar 

  61. Marino, E., Tan, B., Binge, L., Mackay, C. R. & Grey, S. T. B-cell cross-presentation of autologous antigen precipitates diabetes. Diabetes 61, 2893–2905 (2012).

    Article  CAS  Google Scholar 

  62. Pescovitz, M. D. et al. Effect of rituximab on human in vivo antibody immune responses. J. Allergy Clin. Immunol. 128, 1295–1302.e5 (2011).

    Article  CAS  Google Scholar 

  63. Yu, L. et al. Rituximab selectively suppresses specific islet antibodies. Diabetes 60, 2560–2565 (2011).

    Article  CAS  Google Scholar 

  64. Sumpter, K. M., Adhikari, S., Grishman, E. K. & White, P. C. Preliminary studies related to anti-interleukin-1β therapy in children with newly diagnosed type 1 diabetes. Pediatr. Diabetes 12, 656–667 (2011).

    Article  CAS  Google Scholar 

  65. Shehadeh, N. et al. Effect of adjuvant therapy on development of diabetes in mouse and man. Lancet 343, 706–707 (1994).

    Article  CAS  Google Scholar 

  66. Elliott, J. F., Marlin, K. L. & Couch, R. M. Effect of bacille Calmette–Guérin vaccination on C-peptide secretion in children newly diagnosed with IDDM. Diabetes Care 21, 1691–1693 (1998).

    Article  CAS  Google Scholar 

  67. Allen, H. F. et al. Effect of Bacillus Calmette–Guerin vaccination on new-onset type 1 diabetes. A randomized clinical study. Diabetes Care 22, 1703–1707 (1999).

    Article  CAS  Google Scholar 

  68. Faustman, D. L. et al. Proof-of-concept, randomized, controlled clinical trial of Bacillus–Calmette–Guerin for treatment of long-term type 1 diabetes. PLoS ONE 7, e41756 (2012).

    Article  CAS  Google Scholar 

  69. Orban, T. et al. Co-stimulation modulation with abatacept in patients with recent-onset type 1 diabetes: a randomised, double-blind, placebo-controlled trial. Lancet 378, 412–419 (2011).

    Article  CAS  Google Scholar 

  70. Fischer, B., Elias, D., Bretzel, R. G. & Linn., T . Immunomodulation with heat shock protein DiaPep277 to preserve β cell function in type 1 diabetes—an update. Expert Opin. Biol. Ther. 10, 265–272 (2010).

    Article  CAS  Google Scholar 

  71. Walter, M., Philotheou, A., Bonnici, F., Ziegler, A. G. & Jimenez, R. No effect of the altered peptide ligand NBI-6024 on β-cell residual function and insulin needs in new-onset type 1 diabetes. Diabetes Care 32, 2036–2040 (2009).

    Article  CAS  Google Scholar 

  72. Garren, H. Biological Therapeutics Research and Development—GTCbio's Fifth Annual Conference. October 20–22, 2010, San Francisco, CA, USA. IDrugs 13, 840–842 (2010).

    PubMed  Google Scholar 

  73. Ludvigsson, J. et al. GAD65 antigen therapy in recently diagnosed type 1 diabetes mellitus. N. Engl. J. Med. 366, 433–442 (2012).

    Article  CAS  Google Scholar 

  74. Axelsson, S. et al. Long-lasting immune responses 4 years after GAD-alum treatment in children with type 1 diabetes. PLoS ONE 6, e29008 (2011).

    Article  CAS  Google Scholar 

  75. Long, S. A. et al. Rapamycin/IL-2 combination therapy in patients with type 1 diabetes augments tregs yet transiently impairs β-cell function. Diabetes 61, 2340–2348 (2012).

    Article  CAS  Google Scholar 

  76. Gottlieb, P. A. et al. Failure to preserve beta-cell function with mycophenolate mofetil and daclizumab combined therapy in patients with new-onset type 1 diabetes. Diabetes Care 33, 826–832 (2010).

    Article  CAS  Google Scholar 

  77. Bresson, D. & von Herrath, M. Resuscitating adaptive Tregs with combination therapies? Novartis Found. Symp. 292, 50–60 (2008).

    Article  CAS  Google Scholar 

  78. Wicker, L. S. et al. Naturally processed T cell epitopes from human glutamic acid decarboxylase identified using mice transgenic for the type 1 diabetes-associated human MHC class II allele, DRB1*0401. J. Clin. Invest. 98, 2597–2603 (1996).

    Article  CAS  Google Scholar 

  79. Steed, J., Gilliam, L. K., Harris, R. A., Lernmark, A. & Hampe, C. S. Antigen presentation of detergent-free glutamate decarboxylase (GAD65) is affected by human serum albumin as carrier protein. J. Immunol. Methods 334, 114–121 (2008).

    Article  CAS  Google Scholar 

  80. Thunander, M., Thorgeirsson, H., Törn, C., Petersson, C. & Landin-Olsson, M. β-cell function and metabolic control in latent autoimmune diabetes in adults with early insulin versus conventional treatment: a 3-year follow-up. Eur. J. Endocrinol. 164, 239–245 (2011).

    Article  CAS  Google Scholar 

  81. Carlsson, A. et al. Low risk HLA-DQ and increased body mass index in newly diagnosed type 1 diabetes children in the Better Diabetes Diagnosis study in Sweden. Int. J. Obes. 36, 718–724 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The studies in the authors laboratories were supported by the National Institutes of Health (NIH grant DK063861), Juvenile Diabetes Research Foundation (grant 17-2011-576), Swedish Research Council (grant K2011-54X-15312-07-6), Swedish Childhood Diabetes Fund (H. E. Larsson), Swedish Diabetes Foundation (Å. Lernmark), Skåne County Council for Research and Development, SUS Fund, and DIAPREPP (EU grant 202013).

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched data for the article, provided a substantial contribution to discussion of content, wrote the article and reviewed and/or edited the article before submission.

Corresponding author

Correspondence to Åke Lernmark.

Ethics declarations

Competing interests

Å. Lernmark declares associations with the following companies: Diamyd Medical AB (consultant, grant/research support, patent holder/applicant), Probi AB (consultant) and Zealand Pharma (consultant). H. E. Larsson declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lernmark, Å., Larsson, H. Immune therapy in type 1 diabetes mellitus. Nat Rev Endocrinol 9, 92–103 (2013). https://doi.org/10.1038/nrendo.2012.237

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2012.237

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing