Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

ChIP–seq and beyond: new and improved methodologies to detect and characterize protein–DNA interactions

Key Points

  • Chromatin immunoprecipitation followed by sequencing (ChIP–seq) detects protein–DNA binding events and chemical modifications of histone proteins.

  • Recent technological advances in the ChIP–seq protocol have enabled assaying samples with limited cells, increased precision of the genomic location of binding events, and assaying multiple binding events. However, technical and analytical challenges remain.

  • Open chromatin assays — such as DNase–seq, formaldehyde-assisted identification of regulatory elements (FAIRE–seq) and DNaseI footprinting — offer complementary methods to identify genomic regions bound by regulatory proteins.

  • Chromatin conformation capture (3C) and chromatin interaction analysis with paired-end tag sequencing (ChIA-PET) experiments detect three-dimensional chromatin interactions between bound proteins.

  • Protein binding efficiency varies across sites within a single genome due to differences in the underlying genomic sequences and chromatin state. These differences affect the functionality of transcription factors within cells.

  • SNPs in protein–DNA binding sites can affect binding efficiency across individuals and can be detected by allelic biases in sequences produced from high-throughput sequencing assays.

Abstract

Chromatin immunoprecipitation experiments followed by sequencing (ChIP–seq) detect protein–DNA binding events and chemical modifications of histone proteins. Challenges in the standard ChIP–seq protocol have motivated recent enhancements in this approach, such as reducing the number of cells that are required and increasing the resolution. Complementary experimental approaches — for example, DNaseI hypersensitive site mapping and analysis of chromatin interactions that are mediated by particular proteins — provide additional information about DNA-binding proteins and their function. These data are now being used to identify variability in the functions of DNA-binding proteins across genomes and individuals. In this Review, I describe the latest advances in methods to detect and functionally characterize DNA-bound proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparison of experimental protocols.
Figure 2: General analysis pipeline for sequence-tag experiments.
Figure 3: DNaseI footprints correspond to bound proteins.
Figure 4: Detecting chromatin interactions.
Figure 5: Allele-specific bias in a CTCF ChIP–seq experiment.

Similar content being viewed by others

References

  1. Bhinge, A. A., Kim, J., Euskirchen, G. M., Snyder, M. & Iyer, V. R. Mapping the chromosomal targets of STAT1 by Sequence Tag Analysis of Genomic Enrichment (STAGE). Genome Res. 17, 910–916 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Valouev, A. et al. Genome-wide analysis of transcription factor binding sites based on ChIP-Seq data. Nature Methods 5, 829–834 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kharchenko, P. V., Tolstorukov, M. Y. & Park, P. J. Design and analysis of ChIP-seq experiments for DNA-binding proteins. Nature Biotechnol. 26, 1351–1359 (2008).

    Article  CAS  Google Scholar 

  4. Boyle, A. P. et al. High-resolution mapping and characterization of open chromatin across the genome. Cell. 132, 311–322 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Song, L. & Crawford, G. E. DNase-seq: a high-resolution technique for mapping active gene regulatory elements across the genome from mammalian cells. Cold Spring Harb. Protoc. 2010, pdb.prot5384 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Song, L. et al. Open chromatin defined by DNaseI and FAIRE identifies regulatory elements that shape cell-type identity. Genome Res. 21, 1757–1767 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Thurman, R. E. et al. The accessible chromatin landscape of the human genome. Nature 489, 75–82 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Giresi, P. G., Kim, J., McDaniell, R. M., Iyer, V. R. & Lieb, J. D. FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements) isolates active regulatory elements from human chromatin. Genome Res. 17, 877–885 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Giresi, P. G. & Lieb, J. D. Isolation of active regulatory elements from eukaryotic chromatin using FAIRE (Formaldehyde Assisted Isolation of Regulatory Elements). Methods 48, 233–239 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Simon, J. M., Giresi, P. G., Davis, I. J. & Lieb, J. D. Using formaldehyde-assisted isolation of regulatory elements (FAIRE) to isolate active regulatory DNA. Nature Protoc. 7, 256–267 (2012).

    Article  CAS  Google Scholar 

  11. Hesselberth, J. R. et al. Global mapping of protein-DNA interactions in vivo by digital genomic footprinting. Nature Methods 6, 283–289 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Boyle, A. P. et al. High-resolution genome-wide in vivo footprinting of diverse transcription factors in human cells. Genome Res. 21, 456–464 (2010).

    Article  PubMed  CAS  Google Scholar 

  13. Pique-Regi, R. et al. Accurate inference of transcription factor binding from DNA sequence and chromatin accessibility data. Genome Res. 21, 447–455 (2010).

    Article  PubMed  CAS  Google Scholar 

  14. Neph, S. et al. An expansive human regulatory lexicon encoded in transcription factor footprints. Nature 489, 83–90 (2012). This paper describes the identification and analysis of 8.4 million DNaseI footprints across 41 human cell types corresponding to putative factor binding events and predicting 300 novel motifs for factor binding.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dekker, J., Rippe, K., Dekker, M. & Kleckner, N. Capturing chromosome conformation. Science 295, 1306–1311 (2002). This paper described the first general approach to characterize interactions between any two genomic loci and provided the first glimpse of the three-dimensional structure of chromatin in the nucleus.

    Article  CAS  PubMed  Google Scholar 

  16. Dostie, J. et al. Chromosome Conformation Capture Carbon Copy (5C): a massively parallel solution for mapping interactions between genomic elements. Genome Res. 16, 1299–1309 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li, G. et al. ChIA-PET tool for comprehensive chromatin interaction analysis with paired-end tag sequencing. Genome Biol. 11, R22 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Li, G. et al. Extensive promoter-centered chromatin interactions provide a topological basis for transcription regulation. Cell 148, 84–98 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kasowski, M. et al. Variation in transcription factor binding among humans. Science 328, 232–235 (2010). This paper demonstrated that functional variation in transcription factor binding due to differences in genotype could be uncovered using data from ChIP–seq experiments.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rozowsky, J. et al. AlleleSeq: analysis of allele-specific expression and binding in a network framework. Mol. Syst. Biol. 7, 522 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. McDaniell, R. et al. Heritable individual-specific and allele-specific chromatin signatures in humans. Science 328, 235–239 (2010). This paper similarly demonstrated that differences in chromatin structure due to genotype variation could be seen using data from DNase–seq data.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gertz, J. et al. Analysis of DNA methylation in a three-generation family reveals widespread genetic influence on epigenetic regulation. PLoS Genet. 7, e1002228 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Degner, J. F. et al. DNase I sensitivity QTLs are a major determinant of human expression variation. Nature 482, 390–394 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Park, P. J. ChIP–seq: advantages and challenges of a maturing technology. Nature Rev. Genet. 10, 669–680 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Farnham, P. J. Insights from genomic profiling of transcription factors. Nature Rev. Genet. 10, 605–616 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Ku, C. S., Naidoo, N., Wu, M. & Soong, R. Studying the epigenome using next generation sequencing. J. Med. Genet. 48, 721–730 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. The ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

  29. Landt, S. G. et al. ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. Genome Res. 22, 1813–1831 (2012). This paper provides practical guidelines for conducting and analysing ChIP–seq experiments.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Egelhofer, T. A. et al. An assessment of histone-modification antibody quality. Nature Struct. Mol. Biol. 18, 91–93 (2011).

    Article  CAS  Google Scholar 

  31. Fuchs, S. M., Krajewski, K., Baker, R. W., Miller, V. L. & Strahl, B. D. Influence of combinatorial histone modifications on antibody and effector protein recognition. Curr. Biol. 21, 53–58 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Adli, M. & Bernstein, B. E. Whole-genome chromatin profiling from limited numbers of cells using nano-ChIP-seq. Nature Protoc. 6, 1656–1668 (2011).

    Article  CAS  Google Scholar 

  33. Shankaranarayanan, P. et al. Single-tube linear DNA amplification (LinDA) for robust ChIP-seq. Nature Methods 8, 565–567 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Liu, C. L., Schreiber, S. L. & Bernstein, B. E. Development and validation of a T7 based linear amplification for genomic DNA. BMC Genomics 4, 19 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rhee, H. S. & Pugh, B. F. Comprehensive genome-wide protein-DNA interactions detected at single-nucleotide resolution. Cell 147, 1408–1419 (2011). This paper describes a modification to the traditional ChIP–seq protocol that allows for greater resolution in identifying the binding sites of factors. The key advance is the use of an exonuclease to generate more consistent signals of binding locations.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Markham, K., Bai, Y. & Schmitt-Ulms, G. Co-immunoprecipitations revisited: an update on experimental concepts and their implementation for sensitive interactome investigations of endogenous proteins. Anal. Bioanal. Chem. 389, 461–473 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Brinkman, A. B. et al. Sequential ChIP-bisulfite sequencing enables direct genome-scale investigation of chromatin and DNA methylation cross-talk. Genome Res. 22, 1128–1138 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Statham, A. L. et al. Bisulfite sequencing of chromatin immunoprecipitated DNA (BisChIP-seq) directly informs methylation status of histone-modified DNA. Genome Res. 22, 1120–1127 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Havugimana, P. C. et al. A census of human soluble protein complexes. Cell 150, 1068–1081 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Butland, G. et al. Interaction network containing conserved and essential protein complexes in Escherichia coli. Nature 433, 531–537 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Gavin, A. C. et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415, 141–147 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Gavin, A. C. et al. Proteome survey reveals modularity of the yeast cell machinery. Nature 440, 631–636 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Guruharsha, K. G. et al. A protein complex network of Drosophila melanogaster. Cell 147, 690–703 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ho, Y. et al. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415, 180–183 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Hu, P. et al. Global functional atlas of Escherichia coli encompassing previously uncharacterized proteins. PLoS Biol. 7, e96 (2009).

    Article  PubMed  CAS  Google Scholar 

  46. Krogan, N. J. et al. Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440, 637–643 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Kuhner, S. et al. Proteome organization in a genome-reduced bacterium. Science 326, 1235–1240 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Li, H. & Homer, N. A survey of sequence alignment algorithms for next-generation sequencing. Brief Bioinform. 11, 473–483 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kim, H. et al. A short survey of computational analysis methods in analysing ChIP-seq data. Hum. Genom. 5, 117–123 (2011).

    Article  CAS  Google Scholar 

  50. Wilbanks, E. G. & Facciotti, M. T. Evaluation of algorithm performance in ChIP-seq peak detection. PLoS ONE 5, e11471 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Malone, B. M., Tan, F., Bridges, S. M. & Peng, Z. Comparison of four ChIP-Seq analytical algorithms using rice endosperm H3K27 trimethylation profiling data. PLoS ONE 6, e25260 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Laajala, T. D. et al. A practical comparison of methods for detecting transcription factor binding sites in ChIP-seq experiments. BMC Genomics 10, 618 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Gao, D. et al. A survey of statistical software for analysing RNA-seq data. Hum. Genom. 5, 56–60 (2010).

    Article  CAS  Google Scholar 

  54. Kvam, V. M., Liu, P. & Si, Y. A comparison of statistical methods for detecting differentially expressed genes from RNA-seq data. Am. J. Bot. 99, 248–256 (2012).

    Article  PubMed  Google Scholar 

  55. Guo, Y., Mahony, S. & Gifford, D. K. High resolution genome wide binding event finding and motif discovery reveals transcription factor spatial binding constraints. PLoS Comput. Biol. 8, e1002638 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Boeva, V. et al. De novo motif identification improves the accuracy of predicting transcription factor binding sites in ChIP-Seq data analysis. Nucleic Acids Res. 38, e126 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Wu, S., Wang, J., Zhao, W., Pounds, S. & Cheng, C. ChIP-PaM: an algorithm to identify protein-DNA interaction using ChIP-Seq data. Theor. Biol. Med. Model. 7, 18 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Hu, M., Yu, J., Taylor, J. M., Chinnaiyan, A. M. & Qin, Z. S. On the detection and refinement of transcription factor binding sites using ChIP-Seq data. Nucleic Acids Res. 38, 2154–2167 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kulakovskiy, I. V., Boeva, V. A., Favorov, A. V. & Makeev, V. J. Deep and wide digging for binding motifs in ChIP-Seq data. Bioinformatics. 26, 2622–2623 (2012).

    Article  CAS  Google Scholar 

  60. Georgiev, S. et al. Evidence-ranked motif identification. Genome Biol. 11, R19 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Taub, M. A., Corrada Bravo, H. & Irizarry, R. A. Overcoming bias and systematic errors in next generation sequencing data. Genome Med. 2, 87 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Chen, Y. et al. Systematic evaluation of factors influencing ChIP-seq fidelity. Nature Methods 9, 609–614 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Khrameeva, E. E. & Gelfand, M. S. Biases in read coverage demonstrated by interlaboratory and interplatform comparison of 117 mRNA and genome sequencing experiments. BMC Bioinformatics. 13, S4 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Schwartz, S., Oren, R. & Ast, G. Detection and removal of biases in the analysis of next-generation sequencing reads. PLoS ONE 6, e16685 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Cheung, M. S., Down, T. A., Latorre, I. & Ahringer, J. Systematic bias in high-throughput sequencing data and its correction by BEADS. Nucleic Acids Res. 39, e103 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Minoche, A. E., Dohm, J. C. & Himmelbauer, H. Evaluation of genomic high-throughput sequencing data generated on Illumina HiSeq and genome analyzer systems. Genome Biol. 12, R112 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Benjamini, Y. & Speed, T. P. Summarizing and correcting the GC content bias in high-throughput sequencing. Nucleic Acids Res. 40, e72 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Nakamura, K. et al. Sequence-specific error profile of Illumina sequencers. Nucleic Acids Res. 39, e90 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Treangen, T. J. & Salzberg, S. L. Repetitive DNA and next-generation sequencing: computational challenges and solutions. Nature Rev. Genet. 13, 36–46 (2011).

    Article  PubMed  CAS  Google Scholar 

  70. Wang, J., Huda, A., Lunyak, V. V. & Jordan, I. K. A. Gibbs sampling strategy applied to the mapping of ambiguous short-sequence tags. Bioinformatics 26, 2501–2508 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Chung, D. et al. Discovering transcription factor binding sites in highly repetitive regions of genomes with multi-read analysis of ChIP-Seq data. PLoS Comput. Biol. 7, e1002111 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bell, O., Tiwari, V. K., Thoma, N. H. & Schubeler, D. Determinants and dynamics of genome accessibility. Nature Rev. Genet. 12, 554–564 (2011).

    Article  CAS  PubMed  Google Scholar 

  73. Wu, C., Bingham, P. M., Livak, K. J., Holmgren, R. & Elgin, S. C. The chromatin structure of specific genes: I. Evidence for higher order domains of defined DNA sequence. Cell. 16, 797–806 (1979).

    Article  CAS  PubMed  Google Scholar 

  74. Gross, D. S. & Garrard, W. T. Nuclease hypersensitive sites in chromatin. Annu. Rev. Biochem. 57, 159–197 (1988).

    Article  CAS  PubMed  Google Scholar 

  75. Cockerill, P. N. Structure and function of active chromatin and DNase I hypersensitive sites. FEBS J. 278, 2182–2210 (2011).

    Article  CAS  PubMed  Google Scholar 

  76. Crawford, G. E. et al. Genome-wide mapping of DNase hypersensitive sites using massively parallel signature sequencing (MPSS). Genome Res. 16, 123–131 (2006). This paper describes the first DNaseI hypersensitivity experiments that used high-throughput sequencing technology.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wei, G., Hu, G., Cui, K. & Zhao, K. Genome-wide mapping of nucleosome occupancy, histone modifications, and gene expression using next-generation sequencing technology. Methods Enzymol. 513, 297–313 (2012).

    Article  CAS  PubMed  Google Scholar 

  78. Wal, M. & Pugh, B. F. Genome-wide mapping of nucleosome positions in yeast using high-resolution MNase ChIP-Seq. Methods Enzymol. 513, 233–250 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Galas, D. J. & Schmitz, A. DNAse footprinting: a simple method for the detection of protein-DNA binding specificity. Nucleic Acids Res. 5, 3157–3170 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Matys, V. et al. TRANSFAC and its module TRANSCompel: transcriptional gene regulation in eukaryotes. Nucleic Acids Res. 34, D108–D110 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Bryne, J. C. et al. JASPAR, the open access database of transcription factor-binding profiles: new content and tools in the 2008 update. Nucleic Acids Res. 36, D102–D106 (2008).

    Article  CAS  PubMed  Google Scholar 

  82. Newburger, D. E. & Bulyk, M. L. UniPROBE: an online database of protein binding microarray data on protein-DNA interactions. Nucleic Acids Res. 37, D77–D82 (2009).

    Article  CAS  PubMed  Google Scholar 

  83. Dixon, J. R. et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376–380 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Fullwood, M. J. & Ruan, Y. ChIP-based methods for the identification of long-range chromatin interactions. J. Cell. Biochem. 107, 30–39 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Stormo, G. D. & Zhao, Y. Determining the specificity of protein–DNA interactions. Nature Rev. Genet. 11, 751–760 (2010).

    Article  CAS  PubMed  Google Scholar 

  86. Berger, M. F. et al. Compact, universal DNA microarrays to comprehensively determine transcription-factor binding site specificities. Nature Biotechnol. 24, 1429–1435 (2006).

    Article  CAS  Google Scholar 

  87. Badis, G. et al. Diversity and complexity in DNA recognition by transcription factors. Science 324, 1720–1723 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Guertin, M. J., Martins, A. L., Siepel, A. & Lis, J. T. Accurate prediction of inducible transcription factor binding intensities in vivo. PLoS Genet. 8, e1002610 (2012). This paper describes a method that showed the importance of chromatin state dynamics, in addition to sequence preferences, in the DNA-binding intensities of proteins.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Dion, M. F. et al. Dynamics of replication-independent histone turnover in budding yeast. Science 315, 1405–1408 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. van Werven, F. J., van Teeffelen, H. A., Holstege, F. C. & Timmers, H. T. Distinct promoter dynamics of the basal transcription factor TBP across the yeast genome. Nature Struct. Mol. Biol. 16, 1043–1048 (2009).

    Article  CAS  Google Scholar 

  91. Lickwar, C. R., Mueller, F., Hanlon, S. E., McNally, J. G. & Lieb, J. D. Genome-wide protein-DNA binding dynamics suggest a molecular clutch for transcription factor function. Nature 484, 251–255 (2012). This paper provides evidence for a model of transcription factor binding in which factors are either stably bound and promote consistent transcription, or are 'treadmilling' through bound and unbound states resulting in lower transcription rates.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wu, T. D. & Nacu, S. Fast and SNP-tolerant detection of complex variants and splicing in short reads. Bioinformatics 26, 873–881 (2010). This paper describes a short-read sequence aligner that can simultaneously align to multiple DNA sequence variants. This removes the bias that results from using a single reference genome, in which sequences containing alleles present in the reference genome are better-aligned, whereas sequences containing non-reference alleles are penalized.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Zheng, W., Zhao, H., Mancera, E., Steinmetz, L. M. & Snyder, M. Genetic analysis of variation in transcription factor binding in yeast. Nature 464, 1187–1191 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Marks, H. et al. High-resolution analysis of epigenetic changes associated with X inactivation. Genome Res. 19, 1361–1373 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Motallebipour, M. et al. Differential binding and co-binding pattern of FOXA1 and FOXA3 and their relation to H3K4me3 in HepG2 cells revealed by ChIP-seq. Genome Biol. 10, R129 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Yildirim, E., Sadreyev, R. I., Pinter, S. F. & Lee, J. T. X-chromosome hyperactivation in mammals via nonlinear relationships between chromatin states and transcription. Nature Struct. Mol. Biol. 19, 56–61 (2011).

    Article  CAS  Google Scholar 

  97. Gaulton, K. J. et al. A map of open chromatin in human pancreatic islets. Nature Genet. 42, 255–259 (2010).

    Article  CAS  PubMed  Google Scholar 

  98. Bischof, J. M. et al. A genome-wide analysis of open chromatin in human tracheal epithelial cells reveals novel candidate regulatory elements for lung function. Thorax 67, 385–391 (2011).

    Article  PubMed  Google Scholar 

  99. Waki, H. et al. Global mapping of cell type-specific open chromatin by FAIRE-seq reveals the regulatory role of the NFI family in adipocyte differentiation. PLoS Genet. 7, e1002311 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Wu, W. et al. Dynamics of the epigenetic landscape during erythroid differentiation after GATA1 restoration. Genome Res. 21, 1659–1671 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Stitzel, M. L. et al. Global epigenomic analysis of primary human pancreatic islets provides insights into type 2 diabetes susceptibility loci. Cell. Metab. 12, 443–455 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Magnani, L., Ballantyne, E. B., Zhang, X. & Lupien, M. PBX1 genomic pioneer function drives ERα signaling underlying progression in breast cancer. PLoS Genet. 7, e1002368 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Parker, S. C. et al. Mutational signatures of de-differentiation in functional non-coding regions of melanoma genomes. PLoS Genet. 8, e1002871 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. He, H. H. et al. Differential DNase I hypersensitivity reveals factor-dependent chromatin dynamics. Genome Res. 22, 1015–1025 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Shibata, Y. et al. Extensive evolutionary changes in regulatory element activity during human origins are associated with altered gene expression and positive selection. PLoS Genet. 8, e1002789 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Cheng, C. et al. Construction and analysis of an integrated regulatory network derived from high-throughput sequencing data. PLoS Comput. Biol. 7, e1002190 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Muino, J. M., Angenent, G. C. & Kaufmann, K. Visualizing and characterizing in vivo DNA-binding events and direct target genes of plant transcription factors. Methods Mol. Biol. 754, 293–305 (2011).

    Article  CAS  PubMed  Google Scholar 

  108. Hindorff, L. A. et al. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc. Natl Acad. Sci. USA 106, 9362–9367 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Sayers, E. W. et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 40, D13–D25 (2012).

    Article  CAS  PubMed  Google Scholar 

  110. Drouin, R. et al. Structural and functional characterization of the human FMR1 promoter reveals similarities with the hnRNP-A2 promoter region. Hum. Mol. Genet. 6, 2051–2060 (1997).

    Article  CAS  PubMed  Google Scholar 

  111. Essien, K. et al. CTCF binding site classes exhibit distinct evolutionary, genomic, epigenomic and transcriptomic features. Genome Biol. 10, R131 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

I gratefully acknowledge support from the US National Institutes of Health grants U54-HG004563, R21-DA027040 and U01 CA157703, the Department of Defense grant W81XWH-10-1-0772, and the University Cancer Research Fund from the University of North Carolina at Chapel Hill.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

T.S.F. is a limited partner in a partnership that licenses the UCSC Genome Browser to commercial entities.

Related links

Related links

FURTHER INFORMATION

Terrence Furey's homepage

Gene Expression Omnibus (GEO)

Picard sequence analysis tools

UCSC Genome Browser

Glossary

Sonication

The fragmenting of DNA sequence by exposing it to high-frequency sound waves.

Exonuclease

An enzyme that cleaves a single nucleotide from the end of a DNA molecule.

Crosslinked

The strong binding of DNA to interacting proteins through covalent bonds.

Mappability

The uniqueness of a stretch of DNA sequence compared with a whole-genome sequence. Short sequence reads can be confidently mapped to unique sequence, but less confidently mapped to sequence that occurs multiple times in a genome.

DNA binding motifs

A degenerate pattern of DNA sequences to which transcription factors prefer to bind. They are often represented as a probabilistic matrix.

Promoters

DNA sequences immediately upstream of transcription start sites at which RNA polymerases and transcription factors bind to initiate gene transcription.

Enhancers

DNA sequences at which transcription factors bind that increase the transcription rate of one or more target genes that can be at varying distances from the enhancer.

Silencers

DNA sequences at which transcription factors bind that decrease the transcription rate of one or more target genes that can be at varying distances from the silencer.

Insulators

DNA sequences that interfere with enhancer and/or silencer activity.

Locus control regions

Regulatory elements that generally control transcription of multiple genes in a single locus.

Hidden Markov model

(HMM). A statistical model consisting of states that represent an aspect of a sequence (such as in a footprint), which transitions between states; it is used to label bases in a sequence with the modelled property. HMMs are also used in many gene prediction programs.

Bayesian mixture model

A probabilistic model that is used to represent the presence of multiple subpopulations (such as DNaseI footprints) within the whole population (such as the whole genome sequence). Bayesian mixture models allow for the incorporation of prior knowledge about subpopulation frequencies.

Biotinylated

A protein or nucleic acid to which a small biotin molecule has been attached. Biotin binds to streptavidin, thus allowing for the isolation of biotinylated molecules.

Dissociation constant

A constant that reflects the amount of energy that is required to separate two interacting molecules, often referred to as Kd.

DNaseI-sensitivity quantitative trait loci

(dsQTL). A locus whose sensitivity to DNaseI digestion varies based on the presence of different alleles in that locus. An allelic difference may influence the binding of proteins at this locus, causing the variation in digestion.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Furey, T. ChIP–seq and beyond: new and improved methodologies to detect and characterize protein–DNA interactions. Nat Rev Genet 13, 840–852 (2012). https://doi.org/10.1038/nrg3306

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg3306

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research