Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Lymphocyte trafficking across high endothelial venules: dogmas and enigmas

Key Points

  • To mediate an effective immune response, lymphocytes must find their way to secondary lymphoid tissues, such as the lymph nodes, the Peyer's patches and the spleen, where antigens and antigen-presenting dendritic cells are selectively localized.

  • When entering lymph nodes and Peyer's patches, lymphocytes selectively adhere to and transmigrate through the high endothelial venules (HEVs), which are distinct from normal venules in several ways.

  • HEVs express unique adhesion molecules (vascular addressins) that function as ligands for lymphocyte homing receptors. They also express several lymphoid chemokines that can activate integrins on circulating lymphocytes.

  • Accumulating evidence indicates that chemokines produced in and around HEVs have a crucial role in lymphocyte trafficking to lymph nodes and Peyer's patches. Nevertheless, the way that chemokines function in vivo is not fully understood.

  • Numerous chemokine-binding molecules are expressed in and immediately around HEVs. Certain chemokines bind preferentially to certain chemokine-binding molecules that seem to be expressed in a concentric manner in the HEV area.

  • We propose that each chemokine-binding molecule provides a substrate to present the appropriate bound chemokine and that lymphocytes expressing appropriate chemokine receptors respond to these matrix-presented chemokines successively. This would result in directed trafficking of lymphocytes across HEVs and into the lymph-node parenchyma.

  • Lymphocytes might respond to these chemokines by haptotaxis and/or chemokinesis, rather than by chemotaxis.

  • Numerous questions remain unanswered concerning the physiology and function of HEVs.

Abstract

Lymphocytes are intrinsically mobile and circulate continuously between the blood and secondary lymphoid tissues. When naive lymphocytes first enter lymph nodes and Peyer's patches, they adhere to and migrate across specific blood vessels known as high endothelial venules (HEVs). The local availability of chemokines in or near HEVs is crucial for the specificity of this process. Here, we summarize recent studies of the chemokine-directed events in lymphocyte trafficking across HEVs, and we examine the dogmas and enigmas concerning lymphocyte migration to lymph nodes and Peyer's patches. A model is also discussed, in which we propose that the response to chemokines immobilized on extracellular-matrix components is important for lymphocyte positioning in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cell trafficking into and out of lymph nodes.
Figure 2: Chemokines and chemokine-binding molecules expressed in and around high endothelial venules (HEVs) in a concentric manner might function coordinately in lymphocyte trafficking across HEVs.
Figure 3: Chemotaxis, haptotaxis or chemokinesis?

Similar content being viewed by others

References

  1. Butcher, E. C. The regulation of lymphocyte traffic. Curr. Top. Microbiol. Immunol. 128, 85–122 (1986).

    Article  CAS  PubMed  Google Scholar 

  2. Kraal, G. & Mebius, R. E. High endothelial venules: lymphocyte traffic control and controlled traffic. Adv. Immunol. 65, 347–395 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Gowans, J. L. in Adhesion Molecules and Chemokines in Lymphocyte Trafficking (ed. Hamann, A.) ix–xi (Harwood Academic Publishers, Amsterdam, 1997).

    Google Scholar 

  4. Westermann, J. & Pabst, R. How organ-specific is the migration of 'naïve' and 'memory' T cells? Immunol. Today 17, 278–282 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Pabst, R. & Westermann, J. in Adhesion Molecules and Chemokines in Lymphocyte Trafficking (ed. Hamann, A.) 21–37 (Harwood Academic Publishers, Amsterdam, 1997).

    Google Scholar 

  6. Yoffey, J. M. & Courtice, F. C. in Lymphatics, Lymph and the Lymphomyeloid Complex (eds Yoffey, J. M. & Courtice, F. C.) 539–551 (Academic Press, London, 1970).

    Google Scholar 

  7. Smith, J. B., McIntosh, G. H. & Morris, B. The traffic of cells through tissues: a study of peripheral lymph in sheep. J. Anat. 107, 87–100 (1970).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Hein, W. R., McClure, S. J. & Miyasaka, M. Cellular composition of peripheral lymph and skin of sheep defined by monoclonal antibodies. Int. Arch. Allergy Appl. Immunol. 84, 241–246 (1987).

    Article  CAS  PubMed  Google Scholar 

  9. Cella, M. et al. Plasmacytoid monocytes migrate to inflamed lymph nodes and produce large amounts of type I interferon. Nature Med. 5, 919–923 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Banchereau, J. et al. Immunobiology of dendritic cells. Annu. Rev. Immunol. 18, 767–811 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Cavanagh, L. L. & von Andrian, U. Travellers in many guises: the origins and destinations of dendritic cells. Immunol. Cell Biol. 80, 448–462 (2002).

    Article  PubMed  Google Scholar 

  12. Gretz, J. E., Anderson, A. O. & Shaw, S. Cords, channels, corridors and conduits: critical architectural elements facilitating cell interactions in the lymph node cortex. Immunol. Rev. 156, 11–24 (1997). This paper, together with references 58 and 59, describes a special system for delivering small molecules from the subcapsular sinus to the HEVs in lymph nodes.

    Article  CAS  PubMed  Google Scholar 

  13. Bajenoff, M., Granjeaud, S. & Guerder, S. The strategy of T cell antigen-presenting cell encounter in antigen-draining lymph nodes revealed by imaging of initial T cell activation. J. Exp. Med. 198, 715–724 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hay, J. B. & Hobbs, B. B. The flow of blood to lymph nodes and its relation to lymphocyte traffic and the immune response. J. Exp. Med. 145, 31–44 (1977).

    Article  CAS  PubMed  Google Scholar 

  15. Butcher, E. C. et al. Lymphocyte trafficking and regional immunity. Adv. Immunol. 72, 209–253 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Homeister, J. W. et al. The α(1,3)fucosyltransferases FucT-IV and FucT-VII exert collaborative control over selectin-dependent leukocyte recruitment and lymphocyte homing. Immunity 15, 115–126 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Maly, P. et al. The α(1,3)fucosyltransferase Fuc-TVII controls leukocyte trafficking through an essential role in L-, E-, and P-selectin ligand biosynthesis. Cell 86, 643–653 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Hemmerich, S. et al. Sulfation of L-selectin ligands by an HEV-restricted sulfotransferase regulates lymphocyte homing to lymph nodes. Immunity 15, 237–247 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Hiraoka, N. et al. A novel, high endothelial venule-specific sulfotransferase expresses 6-sulfo sialyl Lewisx, an L-selectin ligand displayed by CD34. Immunity 11, 79–89 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Warnock, R. A. et al. Molecular mechanisms of lymphocyte homing to peripheral lymph nodes. J. Exp. Med. 187, 205–216 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. von Andrian, U. H. & M'Rini, C. In situ analysis of lymphocyte migration to lymph nodes. Cell Adhes. Commun. 6, 85–96 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Dustin, M. L. & Springer, T. A. T-cell receptor cross-linking transiently stimulates adhesiveness through LFA-1. Nature 341, 619–624 (1989).

    Article  CAS  PubMed  Google Scholar 

  23. Spangrude, G. J., Baaten, B. A. & Daynes, R. A. Molecular mechanisms of lymphocyte extravasation. I. Studies of two selective inhibitors of lymphocyte recirculation. J. Immunol. 132, 354–362 (1984).

    CAS  PubMed  Google Scholar 

  24. Bargatze, R. F. & Butcher, E. C. Rapid G protein-regulated activation event involved in lymphocyte binding to high endothelial venules. J. Exp. Med. 178, 367–372 (1993).

    Article  CAS  PubMed  Google Scholar 

  25. Hamann, A. et al. Evidence for an accessory role of LFA-1 in lymphocyte-high endothelium interaction during homing. J. Immunol. 140, 693–699 (1988).

    CAS  PubMed  Google Scholar 

  26. Campbell, J. J. et al. Chemokines and the arrest of lymphocyte rolling under flow conditions. Science 279, 381–384 (1998). The first evidence that chemokines can induce arrest of rolling lymphocytes under flow conditions.

    Article  CAS  PubMed  Google Scholar 

  27. Cyster, J. G. Chemokines and cell migration in secondary lymphoid organs. Science 286, 2098–2102 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Kunkel, E. J. & Butcher, E. C. Chemokines and the tissue-specific migration of lymphocytes. Immunity 16, 1–4 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Campbell, J. J. et al. 6-C-kine (SLC), a lymphocyte adhesion-triggering chemokine expressed by high endothelium, is an agonist for the MIP-3-β receptor CCR7. J. Cell Biol. 141, 1053–1059 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yoshida, R. et al. Secondary lymphoid-tissue chemokine is a functional ligand for the CC chemokine receptor CCR7. J. Biol. Chem. 273, 7118–7122 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Nagira, M. et al. Molecular cloning of a novel human CC chemokine secondary lymphoid-tissue chemokine that is a potent chemoattractant for lymphocytes and mapped to chromosome 9p13. J. Biol. Chem. 272, 19518–19524 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Gunn, M. D. et al. A chemokine expressed in lymphoid high endothelial venules promotes the adhesion and chemotaxis of naïve T lymphocytes. Proc. Natl Acad. Sci. USA 95, 258–263 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Vassileva, G. et al. The reduced expression of 6Ckine in the plt mouse results from the deletion of one of two 6Ckine genes. J. Exp. Med. 190, 1183–1188 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tangemann, K., Gunn, M. D., Giblin, P. & Rosen, S. D. A high-endothelial cell derived chemokine induces rapid, efficient, and subset-specific arrest of rolling T lymphocytes on a reconstituted endothelial substrate. J. Immunol. 161, 6330–6337 (1998).

    CAS  PubMed  Google Scholar 

  35. Stein, J. V. et al. The CC chemokine thymus-derived chemotactic agent 4 (TCA-4, secondary lymphoid tissue chemokine, 6Ckine, exodus-2) triggers lymphocyte function-associated antigen 1-mediated arrest of rolling T lymphocytes in peripheral lymph node high endothelial venules. J. Exp. Med. 191, 61–76 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pachynski, R. K., Wu, S. W., Gunn, M. D. & Erle, D. J. Secondary lymphoid-tissue chemokine (SLC) stimulates integrin α4β7-mediated adhesion of lymphocytes to mucosal addressin cell adhesion molecule-1 (MAdCAM-1) under flow. J. Immunol. 161, 952–956 (1998).

    CAS  PubMed  Google Scholar 

  37. Ebisuno, Y. et al. Cutting edge: the B cell chemokine CXC chemokine ligand 13/B lymphocyte chemoattractant is expressed in the high endothelial venules of lymph nodes and Peyer's patches and affects B cell trafficking across high endothelial venules. J. Immunol. 171, 1642–1646 (2003). The first paper to describe that the expression of CXCL13 in the HEV lumen is important for B-cell trafficking across HEVs in both lymph nodes and Peyer's patches.

    Article  CAS  PubMed  Google Scholar 

  38. Baekkevold, E. S. et al. The CCR7 ligand ELC (CCL19) is transcytosed in high endothelial venules and mediates T cell recruitment. J. Exp. Med. 193, 1105–1111 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Luther, S. A. et al. Coexpression of the chemokine ELC and SLC by T zone stromal cells and deletion of the ELC gene in the plt/plt mouse. Proc. Natl Acad. Sci. USA 97, 12694–12699 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nakano, H. & Gunn, M. D. Gene duplications at the chemokine locus on mouse chromosome 4: multiple strain-specific haplotypes and the deletion of secondary lymphoid-organ chemokine and EBI-1 ligand chemokine genes in the plt mutation. J. Immunol. 166, 361–369 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Nakano, H. et al. Genetic defect in T lymphocyte-specific homing into peripheral lymph nodes. Eur. J. Immunol. 27, 215–221 (1997).

    Article  CAS  PubMed  Google Scholar 

  42. Forster, R. et al. CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell 99, 23–33 (1999).

    Article  CAS  PubMed  Google Scholar 

  43. Grabovsky, V. et al. Subsecond induction of α4 integrin clustering by immobilized chemokines stimulates leukocyte tethering and rolling on endothelial vascular cell adhesion molecule 1 under flow conditions. J. Exp. Med. 192, 495–506 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Okada, T. et al. Chemokine requirements for B cell entry to lymph nodes and Peyer's patches. J. Exp. Med. 196, 65–75 (2002). This study delineates the importance of CCR7 and CXCR4 in transmitting integrin-activating signals to rolling T and B cells in HEVs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. von Andrian, U. H. & Mempel, T. R. Homing and cellular traffic in lymph nodes. Nature Rev. Immunol. 3, 867–878 (2003).

    Article  CAS  Google Scholar 

  46. Phillips, R. & Ager, A. Activation of pertussis toxin-sensitive CXCL12 (SDF-1) receptors mediates transendothelial migration of T lymphocytes across lymph node high endothelial cells. Eur. J. Immunol. 32, 837–847 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Cinamon, G., Shinder, V. & Alon, R. Shear forces promote lymphocyte migration across vascular endothelium bearing apical chemokines. Nature Immunol. 2, 515–522 (2001).

    Article  CAS  Google Scholar 

  48. Yamamoto, J. et al. Differential expression of the chemokine receptors by the TH1- and TH2-type effector populations within circulating CD4+ T cells. J. Leukoc. Biol. 68, 568–574 (2000).

    CAS  PubMed  Google Scholar 

  49. Nagakubo, D. et al. A high endothelial venule secretory protein, mac25/angiomodulin, interacts with multiple high endothelial venule-associated molecules including chemokines. J. Immunol. 171, 553–561 (2003). The first study to show that a component of the basal lamina of HEVs can bind lymphoid chemokines preferentially and present them to receptor-expressing cells.

    Article  CAS  PubMed  Google Scholar 

  50. Janatpour, M. J. et al. Tumor necrosis factor-dependent segmental control of MIG expression by high endothelial venules in inflamed lymph nodes regulates monocyte recruitment. J. Exp. Med. 194, 1375–1384 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Loetscher, M. et al. Chemokine receptor specific for IP10 and MIG: structure, function, and expression in activated T lymphocytes. J. Exp. Med. 184, 963–969 (1996).

    Article  CAS  PubMed  Google Scholar 

  52. Yoshida, R. et al. EBI1-ligand chemokine (ELC) attracts a broad spectrum of lymphocytes: activated T cells strongly up-regulate CCR7 and efficiently migrate toward ELC. Int. Immunol. 10, 901–910 (1998).

    Article  CAS  PubMed  Google Scholar 

  53. Nagira, M. et al. A lymphocyte-specific CC chemokine, secondary lymphoid tissue chemokine (SLC), is a highly efficient chemoattractant for B cells and activated T cells. Eur. J. Immunol. 28, 1516–1523 (1998).

    Article  CAS  PubMed  Google Scholar 

  54. Warnock, R. A. et al. The role of chemokines in the microenvironmental control of T versus B cell arrest in Peyer's patch high endothelial venules. J. Exp. Med. 191, 77–88 (2000). The authors use intravital microscopy to show the presence of T- and B-lymphotropic HEVs. This paper also shows that CCL21 expression by HEVs closely correlates with preferential T-cell adhesion to HEVs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Forster, R., Emrich, T., Kremmer, E. & Lipp, M. Expression of the G-protein-coupled receptor BLR1 defines mature, recirculating B cells and a subset of T-helper memory cells. Blood 84, 830–840 (1994).

    CAS  PubMed  Google Scholar 

  56. Gunn, M. D. et al. A B-cell homing chemokine made in lymphoid follicles activates Burkitt's lymphoma receptor-1. Nature 391, 799–803 (1998).

    Article  CAS  PubMed  Google Scholar 

  57. Legler, D. F. et al. B cell-attracting chemokine 1, a human CXC chemokine expressed in lymphoid tissues, selectively attracts B lymphocytes via BLR1/CXCR5. J. Exp. Med. 187, 655–660 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gretz, J. E., Kaldjian, E., Anderson, A. O. & Shaw, S. Sophisticated strategies for information encounter in the lymph node: the reticular network as a conduit of soluble information and a highway for cell traffic. J. Immunol. 157, 495–499 (1996).

    CAS  PubMed  Google Scholar 

  59. Gretz, J. E. et al. Lymph-borne chemokines and other low molecular weight molecules reach high endothelial venules via specialized conduits while a functional barrier limits access to the lymphocyte microenvironments in lymph node cortex. J. Exp. Med. 192, 1425–1440 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ford, W. L. Lymphocyte migration and immune responses. Prog. Allergy 19, 1–59 (1975).

    CAS  PubMed  Google Scholar 

  61. Reif, K. et al. Balanced responsiveness to chemoattractants from adjacent zones determines B-cell position. Nature 416, 94–99 (2002).

    Article  PubMed  Google Scholar 

  62. Gutman, G. A. & Weissman, I. L. Homing properties of thymus-independent follicular lymphocytes. Transplantation 16, 621–629 (1973).

    Article  CAS  PubMed  Google Scholar 

  63. Nieuwenhuis, P. & Ford, W. L. Comparative migration of B- and T-lymphocytes in the rat spleen and lymph nodes. Cell. Immunol. 23, 254–267 (1976).

    Article  CAS  PubMed  Google Scholar 

  64. Palframan, R. et al. Inflammatory chemokine transport and presentation in HEV: a remote control mechanism for monocyte recruitment to lymph nodes in inflamed tissues. J. Exp. Med. 194, 1361–1373 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Muller, G. & Lipp, M. Shaping up adaptive immunity: the impact of CCR7 and CXCR5 on lymphocyte trafficking. Microcirculation 10, 325–334 (2003).

    Article  PubMed  Google Scholar 

  66. Willimann, K. et al. The chemokine SLC is expressed in T cell areas of lymph nodes and mucosal lymphoid tissues and attracts activated T cells via CCR7. Eur. J. Immunol. 28, 2025–2034 (1998).

    Article  CAS  PubMed  Google Scholar 

  67. Ansel, K. M. et al. In vivo-activated CD4 T cells upregulate CXC chemokine receptor 5 and reprogram their response to lymphoid chemokines. J. Exp. Med. 190, 1123–1134 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Schaerli, P. et al. CXC chemokine receptor 5 expression defines follicular homing T cells with B cell helper function. J. Exp. Med. 192, 1553–1562 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Breitfeld, D. et al. Follicular B helper T cells express CXC chemokine receptor 5, localize to B cell follicles, and support immunoglobulin production. J. Exp. Med. 192, 1545–1552 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sallusto, F., Palermo, B., Hoy, A. & Lanzavecchia, A. The role of chemokine receptors in directing traffic of naive, type 1 and type 2 T cells. Curr. Top. Microbiol. Immunol. 246, 123–128 (1999).

    CAS  PubMed  Google Scholar 

  71. Sallusto, F., Mackay, C. R. & Lanzavecchia, A. The role of chemokine receptors in primary, effector, and memory immune responses. Annu. Rev. Immunol. 18, 593–620 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Goodarzi, K. et al. Leukotriene B4 and BLT1 control cytotoxic effector T cell recruitment to inflamed tissues. Nature Immunol. 4, 965–973 (2003).

    Article  CAS  Google Scholar 

  73. Ott, V. L. et al. Mast-cell dependent migration of effector CD8+ T cells through production of leukotriene B4 . Nature Immunol. 4, 974–981 (2003).

    Article  CAS  Google Scholar 

  74. Tager, A. M. et al. Leukotriene B4 receptor BLT1 mediates early effector T cell recruitment. Nature Immunol. 4, 982–990 (2003).

    Article  CAS  Google Scholar 

  75. Bessis, M. in Living Blood Cells and Their Ultrastructure 543 (Springer, Berlin, 1973).

    Google Scholar 

  76. Middleton, J. et al. Transcytosis and surface presentation of IL-8 by venular endothelial cells. Cell 91, 385–395 (1997).

    Article  CAS  PubMed  Google Scholar 

  77. Nolte, M. A. et al. A conduit system distributes chemokines and small blood-borne molecules through the splenic white pulp. J. Exp. Med. 198, 505–512 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Foxman, E. F., Campbell, J. J. & Butcher, E. C. Multistep navigation and the combinatorial control of leukocyte chemotaxis. J. Cell Biol. 139, 1349–1360 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wei, S. H., Parker, I., Miller, M. J. & Cahalan, M. D. A stochastic view of lymphocyte motility and trafficking within the lymph node. Immunol. Rev. 195, 136–159 (2003). This paper indicates that lymphocytes might respond to matrix-immobilized chemokines.

    Article  CAS  PubMed  Google Scholar 

  80. Wilkinson, P. C. Assays of leukocyte locomotion and chemotaxis. J. Immunol. Methods 216, 139–153 (1998).

    Article  CAS  PubMed  Google Scholar 

  81. Bernfield, M. et al. Functions of cell surface heparan sulfate proteoglycans. Annu. Rev. Biochem. 68, 729–777 (1999).

    Article  CAS  PubMed  Google Scholar 

  82. Hirose, J. et al. Versican interacts with chemokines and modulates cellular responses. J. Biol. Chem. 276, 5228–5234 (2001).

    Article  CAS  PubMed  Google Scholar 

  83. Kawashima, H. et al. Oversulfated chondroitin/dermatan sulfates containing GlcAβ1/IdoAα1-3GalNAc(4,6-O-disulfate) interacts with L- and P-selectin and chemokines. J. Biol. Chem. 277, 12921–12930 (2002).

    Article  CAS  PubMed  Google Scholar 

  84. Izawa, D. et al. Expression profile of active genes in mouse lymph node high endothelial cells. Int. Immunol. 11, 1989–1998 (1999).

    Article  CAS  PubMed  Google Scholar 

  85. Cheifetz, S. et al. Endoglin is a component of the transforming growth factor-β receptor system in human endothelial cells. J. Biol. Chem. 267, 19027–19030 (1992).

    CAS  PubMed  Google Scholar 

  86. Saito, K. et al. Gene expression profiling of mucosal addressin cell adhesion molecule-1+ high endothelial venule cells (HEV) and identification of a leucine-rich HEV glycoprotein as a HEV marker. J. Immunol. 168, 1050–1059 (2002).

    Article  CAS  PubMed  Google Scholar 

  87. Chin, Y. -H., Ye, M. -W., Cai, J. -P. & Wu, X. -M. Differential regulation of tissue-specific lymph node high endothelial venule cell adhesion molecules by tumor necrosis factor and transforming growth factor-β1. Immunology 87, 559–565 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Girard, J. -P. et al. Heterogeneity of endothelial cells. The specialized phenotype of human high endothelial venules characterized by suppression subtractive hybridization. Am. J. Pathol. 155, 2043–2055 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kashiwazaki, M. et al. A high endothelial venule-expressing promiscuous chemokine receptor DARC can bind inflammatory, but not lymphoid, chemokines and is dispensable for lymphocyte homing under physiological conditions. Int. Immunol. 15, 1219–1227 (2003).

    Article  CAS  PubMed  Google Scholar 

  90. Neote, K., Mak, J. Y., Kolakowski, L. F. Jr & Schall, T. J. Functional and biochemical analysis of the cloned Duffy antigen: identity with the red blood cell chemokine receptor. Blood 84, 44–52 (1994).

    CAS  PubMed  Google Scholar 

  91. Hadley, T. J. & Peiper, S. C. From malaria to chemokine receptor: the emerging physiologic role of the Duffy blood group antigen. Blood 89, 3077–3091 (1997).

    CAS  PubMed  Google Scholar 

  92. Baxter, R. C. et al. Recommendations for nomenclature of the insulin-like growth factor binding protein superfamily. Endocrinology 139, 4036 (1998).

    Article  CAS  PubMed  Google Scholar 

  93. Akaogi, K. et al. Specific accumulation of tumor-derived adhesion factor in tumor blood vessels and in capillary tube-like structures of cultured vascular endothelial cells. Proc. Natl Acad. Sci. USA 93, 8384–8389 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Sato, J. et al. Identification of cell-binding site of angiomodulin (AGM/TAF/Mac25) that interacts with heparan sulfates on cell surface. J. Cell. Biochem. 75, 187–195 (1999).

    Article  CAS  PubMed  Google Scholar 

  95. Hwa, V., Oh, Y. & Rosenfeld, R. G. The insulin-like growth factor-binding protein (IGFBP) superfamily. Endocr. Rev. 20, 761–787 (1999).

    CAS  PubMed  Google Scholar 

  96. Usui, T. et al. Characterization of mac25/angiomodulin expression by high endothelial venule cells in lymphoid tissues and its identification as an inducible marker for activated endothelial cells. Int. Immunol. 14, 1273–1282 (2002).

    Article  CAS  PubMed  Google Scholar 

  97. Pelletier, A. J. et al. Presentation of chemokine SDF-1α by fibronectin mediates directed migration of T cells. Blood 96, 2682–2690 (2000).

    CAS  PubMed  Google Scholar 

  98. Miller, M. J., Wei, S. H., Cahalan, M. D. & Parker, I. Autonomous T cell trafficking examined in vivo with intravital two-photon microscopy. Proc. Natl Acad. Sci. USA 100, 2604–2609 (2003). Together with reference 99, this paper shows that, after extravasation through HEVs, T cells move rapidly in the lymph-node parenchyma in a seemingly random manner.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Miller, M. J. et al. T cell repertoire scanning is promoted by dynamic dendritic cell behavior and random T cell motility in the lymph node. Proc. Natl Acad. Sci. USA 101, 998–1003 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Twisk, A. J., Groeneveld, P. H. & Kraal, G. The effects of bacterial lipopolysaccharide (LPS) on high endothelial venules and interdigitating cells in mouse lymph nodes. Immunobiology 176, 410–422 (1988).

    Article  CAS  PubMed  Google Scholar 

  101. Baekkevold, E. S. et al. Molecular characterization of NF-HEV, a nuclear factor preferentially expressed in human high endothelial venules. Am. J. Pathol. 163, 69–79 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Streeter, P. R., Rouse, B. T. & Butcher, E. C. Immunohistologic and functional characterization of a vascular addressin involved in lymphocyte homing into peripheral lymph nodes. J. Cell Biol. 107, 1853–1862 (1988).

    Article  CAS  PubMed  Google Scholar 

  103. Cahill, R. N. P., Poskitt, D., Frost, H. & Trnka, Z. Two distinct pools of recirculating T lymphocytes: migratory characteristics of nodal and intestinal T lymphocytes. J. Exp. Med. 145, 420–428 (1977).

    Article  CAS  PubMed  Google Scholar 

  104. Streeter, P. R. et al. A tissue-specific endothelial cell molecule involved in lymphocyte homing. Nature 331, 41–46 (1988).

    Article  CAS  PubMed  Google Scholar 

  105. Nakache, M., Berg, E. L., Streeter, P. R. & Butcher, E. C. The mucosal vascular addressin is a tissue-specific endothelial cell adhesion molecule for circulating lymphocytes. Nature 337, 179–181 (1989).

    Article  CAS  PubMed  Google Scholar 

  106. Stevens, S. K., Weissman, I. L. & Butcher, E. C. Differences in the migration of B and T lymphocytes: organ-selective localization in vivo and the role of lymphocyte-endothelial cell recognition. J. Immunol. 128, 844–851 (1982).

    CAS  PubMed  Google Scholar 

  107. Sprent, J. Circulating T and B lymphocytes of the mouse. I. Migratory properties. Cell. Immunol. 7, 10–39 (1973).

    Article  CAS  PubMed  Google Scholar 

  108. Westermann, J. et al. IFN-γ influences the migration of thoracic duct B and T lymphocyte subsets in vivo. Random increase in disappearance from the blood and differential decrease in reappearance in the lymph. J. Immunol. 150, 3843–3852 (1993).

    CAS  PubMed  Google Scholar 

  109. Blaschke, V., Micheel, B., Pabst, R. & Westermann, J. Lymphocyte traffic through lymph nodes and Peyer's patches of the rat: B- and T-cell-specific migration patterns within the tissue, and their dependence on splenic tissue. Cell Tissue Res. 282, 377–386 (1995).

    Article  CAS  PubMed  Google Scholar 

  110. Kim, C. H. et al. Rules of chemokine receptor association with T cell polarization in vivo. J. Clin. Invest. 108, 1331–1339 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Debes, G. F., Hopken, U. E. & Hamann, A. In vivo differentiated cytokine-producing CD4+ T cells express functional CCR7. J. Immunol. 168, 5441–5447 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank R. Pabst, J. Westermann and T. Hirata for critically reading the manuscript. We also thank members of the Laboratory of Molecular and Cellular Recognition for discussions and suggestions. We thank the Japanese Ministry of Education, Culture, Sports, Science and Technology for continuous grant support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayuki Miyasaka.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

LocusLink

CCL2

CCL5

CCL19

CCL21

CCR7

CD105

CXCL1

CXCL9

CXCL10

CXCL12

CXCL13

CXCR3

CXCR4

DARC

ICAM1

ICAM2

LFA1

MAC25

MADCAM1

VCAM1

VLA4

FURTHER INFORMATION

Masayuki Miyasaka's lab

Glossary

PEYER'S PATCHES

Groups of lymphoid nodules that are present in the small intestine (usually the ileum). They occur massed together on the intestinal wall, opposite the line of attachment of the mesentery. Peyer's patches consist of a dome area, B-cell follicles and interfollicular T-cell areas. High endothelial venules are present mainly in the interfollicular areas.

HIGH ENDOTHELIAL VENULES

(HEVs). Venules (small veins that join capillaries to larger veins) that have a high-walled endothelium and are present in the paracortex of lymph nodes and tonsils, as well as in the interfollicular areas of Peyer's patches.

BASAL LAMINA

A supporting structure located at the boundary between endothelia (or epithelia) and the underlying connective tissue. In blood vessels, the basal lamina surrounds the endothelial cells and pericytes, providing physical support. It is composed mainly of collagen IV and laminin molecules. Fibronectin is also present on the connective-tissue face. The basal lamina also seems to be involved in maintaining and modulating endothelial-cell functions by capturing various humoral factors.

INTERFOLLICULAR HEVS

High endothelial venules (HEVs) located in the interfollicular area — the T-cell-dependent area of the lymph-node cortex, which lies between B-cell follicles. Most HEVs belong to this category.

FOLLICULAR HEVS

High endothelial venules (HEVs) located within B-cell follicles.

PARAFOLLICULAR HEVS

High endothelial venules (HEVs) found near, but not within, B-cell follicles.

DRY MOTIF

An amino-acid motif composed of aspartic acid (D), arginine (R) and tyrosine (Y). It is highly conserved among G-protein-coupled receptors and is thought to be essential for G-protein-mediated signalling.

INTRAVITAL MULTI-PHOTON LASER MICROSCOPY

Multi-photon laser microscopy combines the advanced optical techniques of laser-scanning confocal microscopy with long-wavelength multi-photon fluorescence excitation to capture high-resolution, three-dimensional images of living cells and/or tissues that have been labelled with fluorophores. It provides a greater tissue imaging depth (up to 350 μm depending on the tissue) and less photobleaching and phototoxicity than conventional imaging methods.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miyasaka, M., Tanaka, T. Lymphocyte trafficking across high endothelial venules: dogmas and enigmas. Nat Rev Immunol 4, 360–370 (2004). https://doi.org/10.1038/nri1354

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1354

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing