Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Growth of the plant cell wall

Key Points

  • The growing cell wall in plants is a thin, strong and pliant extracellular layer, composed of cellulose microfibrils embedded in a hydrated matrix that is made of complex polysaccharides and a small amount of structural proteins.

  • A cellulose microfibril consists of 36 (1,4)-linked β-D-glucans that crystallize into a strong, thin ribbon 4 nm in diameter. Microfibrils are synthesized by large membrane complexes that contain three isoforms of cellulose synthase, which are glucosyltransferases that are encoded by CESA genes.

  • A membrane-bound endoglucanase, which is called KORRIGAN, is required for proper formation of the cellulose microfibril, perhaps serving a trimming function.

  • Matrix polysaccharides, which include cellulose-binding glycans (hemicelluloses) and acid polysaccharides (pectins), are synthesized in the Golgi apparatus and, after secretion into the wall, become integrated with the existing wall by enzymatic and spontaneous crosslinking mechanisms. Recent studies have identified the genes encoding glycosyltransferases that synthesize some of the glycosidic linkages in xyloglucans, mannans and pectins.

  • Cell-wall enlargement begins with wall stress relaxation, which reduces cell turgor pressure, which in turn draws water into the cell to increase cell volume and restore both turgor and wall stress.

  • Expansins are a group of nonenzymatic wall proteins that induce wall stress relaxation and cell wall extension (creep) in cell walls. They mediate 'acid growth' of cell walls and might function by disrupting the noncovalent linkages that hold microfibrils in the cell wall.

  • Xyloglucan is a key polymer that links microfibrils together. Xyloglucan hydrolases have the potential for loosening cell walls and causing cell-wall enlargement, but it is still unclear whether plant enzymes function in this way in vivo.

  • Xyloglucan endotransglucosylase cuts and joins xyloglucans. The consequences of this biochemical activity for wall properties depend on the state of xyloglucan in the cell wall.

  • Plant cellulases might digest the noncrystalline regions of cellulose microfibrils and release trapped xyloglucans, resulting in increased wall extensibility and cell growth.

  • It has been proposed that the hydroxyl radical functions as a novel wall-loosening agent that nonenzymatically cuts wall polysaccharides. Whether it is produced in sufficient amounts to cause wall loosening and whether it has sufficient specificity for action remain to be answered.

Abstract

Plant cells encase themselves within a complex polysaccharide wall, which constitutes the raw material that is used to manufacture textiles, paper, lumber, films, thickeners and other products. The plant cell wall is also the primary source of cellulose, the most abundant and useful biopolymer on the Earth. The cell wall not only strengthens the plant body, but also has key roles in plant growth, cell differentiation, intercellular communication, water movement and defence. Recent discoveries have uncovered how plant cells synthesize wall polysaccharides, assemble them into a strong fibrous network and regulate wall expansion during cell growth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Photographic depictions of plant cell walls.
Figure 2: Structure of the primary cell wall.
Figure 3: The cellulose-synthesizing machinery of the cell.
Figure 4: The activity of xyloglucan endotransglucosylase/hydrolase (XTH) as an endotransglucosylase.

Similar content being viewed by others

References

  1. Carpita, N. C. & Gibeaut, D. M. Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J. 3, 1–30 (1993). A detailed technical review of the structure of cell wall polysaccharides and how they might be arranged in the wall.

    Article  CAS  PubMed  Google Scholar 

  2. O'Neill, M. A. & York, W. S. The Plant Cell Wall (ed. Rose, J. K. C.) 1–54 (Blackwell, Oxford, 2003).

    Google Scholar 

  3. Willats, W. G., McCartney, L., Mackie, W. & Knox, J. P. Pectin: cell biology and prospects for functional analysis. Plant Mol. Biol. 47, 9–27 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Vincken, J. P. et al. If homogalacturonan were a side chain of rhamnogalacturonan I. Implications for cell wall architecture. Plant Physiol. 132, 1781–1789 (2003). Discusses alternative models for how pectin domains may be connected to one another.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Iwai, H., Masaoka, N., Ishii, T. & Satoh, S. A pectin glucuronyltransferase gene is essential for intercellular attachment in the plant meristem. Proc. Natl Acad. Sci. USA 99, 16319–16324 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Kimura, S. et al. Immunogold labeling of rosette terminal cellulose-synthesizing complexes in the vascular plant Vigna angularis. Plant Cell 11, 2075–2085 (1999). Showed that cellulose synthase is associated with particle rosettes or terminal complexes in plants.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Doblin, M. S., Kurek, I., Jacob-Wilk, D. & Delmer, D. P. Cellulose biosynthesis in plants: from genes to rosettes. Plant Cell Physiol. 43, 1407–1420 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Saxena, I. M. & Brown, R. M. Jr. Cellulose biosynthesis: current views and evolving concepts. Ann. Bot. (Lond.) 96, 9–21 (2005).

    Article  CAS  Google Scholar 

  9. Ray, P. M. Radiographic study of cell wall deposition in growing plant cells. J. Cell Biol. 35, 659–674 (1967).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Proseus, T. E. & Boyer, J. S. Turgor pressure moves polysaccharides into growing cell walls of Chara corallina. Ann. Bot. 95, 967–976 (2005). Showed that turgor pressure facilitates movement of polysaccharides into the cell wall by multiple means.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Pear, J. R., Kawagoe, Y., Schreckengost, W. E., Delmer, D. P. & Stalker, D. M. Higher plants contain homologs of the bacterial celA genes encoding the catalytic subunit of cellulose synthase. Proc. Natl Acad. Sci. USA 93, 12637–12642 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Arioli, T. et al. Molecular analysis of cellulose biosynthesis in Arabidopsis. Science 279, 717–720 (1998). Genetic evidence identifying cellulose synthase genes.

    Article  CAS  PubMed  Google Scholar 

  13. Taylor, N. G., Howells, R. M., Huttly, A. K., Vickers, K. & Turner, S. R. Interactions among three distinct CesA proteins essential for cellulose synthesis. Proc. Natl Acad. Sci. USA 100, 1450–1455 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Burn, J. E., Hocart, C. H., Birch, R. J., Cork, A. C. & Williamson, R. E. Functional analysis of the cellulose synthase genes CesA1, CesA2, and CesA3 in Arabidopsis. Plant Physiol. 129, 797–807 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Burton, R. A., Shirley, N. J., King, B. J., Harvey, A. J. & Fincher, G. B. The CesA gene family of barley. Quantitative analysis of transcripts reveals two groups of co-expressed genes. Plant Physiol. 134, 224–236 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Scheible, W. R. & Pauly, M. Glycosyltransferases and cell wall biosynthesis: novel players and insights. Curr. Opin. Plant Biol. 7, 285–295 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Fagard, M. et al. PROCUSTE1 encodes a cellulose synthase required for normal cell elongation specifically in roots and dark-grown hypocotyls of Arabidopsis. Plant Cell 12, 2409–2424 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Taylor, N. G., Howells, R. M., Huttly, A. K., Vickers, K. & Turner, S. R. Interactions among three distinct CesA proteins essential for cellulose synthesis. Proc. Natl Acad. Sci. USA 100, 1450–1455 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Kurek, I., Kawagoe, Y., Jacob-Wilk, D., Doblin, M. & Delmer, D. Dimerization of cotton fiber cellulose synthase catalytic subunits occurs via oxidation of the zinc-binding domains. Proc. Natl Acad. Sci. USA 99, 11109–11114 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Lloyd, C. & Chan, J. Microtubules and the shape of plants to come. Nature Rev. Mol. Cell Biol. 5, 13–22 (2004).

    Article  CAS  Google Scholar 

  21. Hayashi, T. Xyloglucans in the primary cell wall. Ann. Rev. Plant Physiol. Plant Mol. Biol. 40, 139–168 (1989).

    Article  CAS  Google Scholar 

  22. Peng, L., Kawagoe, Y., Hogan, P. & Delmer, D. Sitosterol-β-glucoside as primer for cellulose synthesis in plants. Science 295, 147–150 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Schrick, K. et al. A link between sterol biosynthesis, the cell wall, and cellulose in Arabidopsis. Plant J. 38, 227–243 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Lane, D. R. et al. Temperature-sensitive alleles of RSW2 link the KORRIGAN endo-1,4-β-glucanase to cellulose synthesis and cytokinesis in Arabidopsis. Plant Physiol. 126, 278–288 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nicol, F. et al. A plasma membrane-bound putative endo-1,4-β-D-glucanase is required for normal wall assembly and cell elongation in Arabidopsis. EMBO J. 17, 5563–5576 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zuo, J. et al. KORRIGAN, an Arabidopsis endo-1,4-β-glucanase, localizes to the cell plate by polarized targeting and is essential for cytokinesis. Plant Cell 12, 1137–1152 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Szyjanowicz, P. M. et al. The irregular xylem 2 mutant is an allele of korrigan that affects the secondary cell wall of Arabidopsis thaliana. Plant J. 37, 730–740 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Robert, S., Mouille, G. & Hofte, H. The mechanism and regulation of cellulose synthesis in primary walls: lessons from cellulose-deficient Arabidopsis mutants. Cellulose 11, 351–364 (2004).

    Article  CAS  Google Scholar 

  29. Persson, S., Wei, H., Milne, J., Page, G. P. & Somerville, C. R. Identification of genes required for cellulose synthesis by regression analysis of public microarray data sets. Proc. Natl Acad. Sci. USA 102, 8633–8638 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Brown, D. M., Zeef, L. A., Ellis, J., Goodacre, R. & Turner, S. R. Identification of novel genes in Arabidopsis involved in secondary cell wall formation using expression profiling and reverse genetics. Plant Cell 17, 2281–2285 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Richmond, T. A. & Somerville, C. R. The cellulose synthase superfamily. Plant Physiol. 124, 495–498 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dhugga, K. S. et al. Guar seed β-mannan synthase is a member of the cellulose synthase super gene family. Science 303, 363–366 (2004). Elegant biochemical evidence that a member of the CSLA gene family encodes the β-mannan synthase.

    Article  CAS  PubMed  Google Scholar 

  33. Liepman, A. H., Wilkerson, C. G. & Keegstra, K. Expression of cellulose synthase-like (Csl) genes in insect cells reveals that CslA family members encode mannan synthases. Proc. Natl Acad. Sci. USA 102, 2221–2226 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Fry, S. C. Cellulases, hemicelluloses and auxin-stimulated growth: A possible relationship. Physiol. Plant. 75, 532–536 (1989).

    Article  CAS  Google Scholar 

  35. Talbott, L. D. & Ray, P. M. Molecular size and separability features of pea cell wall polysaccharides. Implications for models of primary wall structure. Plant Physiol. 92, 357–368 (1992). Showed that matrix polysaccharides are associated with each other mostly non-covalently and presented an alternative model of wall architecture.

    Article  Google Scholar 

  36. Labavitch, J. M. & Ray, P. M. Relationship between promotion of xyloglucan metabolism and induction of elongation by IAA. Plant Physiol. 54, 499–502 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nishitani, K. & Masuda, Y. Auxin-induced changes in the cell wall structure: changes in the sugar compositions, intrinsic viscosity and molecular weight distributions of matrix polysaccharides of the epicotyl cell wall of Vigna angularis. Physiol. Plant. 52, 482–494 (1981).

    Article  CAS  Google Scholar 

  38. Yuan, S., Wu, Y. & Cosgrove, D. J. A fungal endoglucanase with plant cell wall extension activity. Plant Physiol. 127, 324–333 (2001). First demonstration that plant cell walls can extend as a result of hydrolysis by an endoglucanase (fungal, not plant), but with characteristics very different from expansin action.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Park, Y. W. et al. Enhancement of growth and cellulose accumulation by overexpression of xyloglucanase in poplar. FEBS Lett. 564, 183–187 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Veytsman, B. A. & Cosgrove, D. J. A model of cell wall expansion based on thermodynamics of polymer networks. Biophys. J. 75, 2240–2250 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Takeda, T. et al. Suppression and acceleration of cell elongation by integration of xyloglucans in pea stem segments. Proc. Natl Acad. Sci. USA 99, 9055–9060 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Nishitani, K. & Tominaga, T. Endo-xyloglucan transferase, a novel class of glycosyltransferase that catalyzes transfer of a segment of xyloglucan molecule to another xyloglucan molecule. J. Biol. Chem. 267, 21058–21064 (1992).

    CAS  PubMed  Google Scholar 

  43. Steele, N. M. et al. Ten isoenzymes of xyloglucan endotransglycosylase from plant cell walls select and cleave the donor substrate stochastically. Biochem. J. 355, 671–679 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Purugganan, M. M., Braam, J. & Fry, S. C. The Arabidopsis TCH4 xyloglucan endotransglycosylase. Substrate specificity, pH optimum, and cold tolerance. Plant Physiol. 115, 181–190 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yokoyama, R. & Nishitani, K. A comprehensive expression analysis of all members of a gene family encoding cell-wall enzymes allowed us to predict cis-regulatory regions involved in cell-wall construction in specific organs of Arabidopsis. Plant Cell Physiol. 42, 1025–1033 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Rose, J. K., Braam, J., Fry, S. C. & Nishitani, K. The XTH family of enzymes involved in xyloglucan endotransglucosylation and endohydrolysis: Current perspectives and a new unifying nomenclature. Plant Cell Physiol. 43, 1421–1435 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Thompson, J. E. & Fry, S. C. Restructuring of wall-bound xyloglucan by transglycosylation in living plant cells. Plant J. 26, 23–34 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Strohmeier, M. et al. Molecular modeling of family GH16 glycoside hydrolases: potential roles for xyloglucan transglucosylases/hydrolases in cell wall modification in the Poaceae. Protein Sci. 13, 3200–3213 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Schroder, R., Wegrzyn, T. F., Bolitho, K. M. & Redgwell, R. J. Mannan transglycosylase: a novel enzyme activity in cell walls of higher plants. Planta 219, 590–600 (2004).

    Article  PubMed  CAS  Google Scholar 

  50. Marga, F., Grandbois, M., Cosgrove, D. J. & Baskin, T. I. Cell wall extension results in the coordinate separation of parallel microfibrils: evidence from scanning electron microscopy and atomic force microscopy. Plant J. 43, 181–190 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Cosgrove, D. J. Rapid suppression of growth by blue light: occurrence, time course, and general characteristics. Plant Physiol. 67, 584–590 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Forterre, Y., Skotheim, J. M., Dumais, J. & Mahadevan, L. How the Venus flytrap snaps. Nature 433, 421–425 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Cosgrove, D. J. Wall extensibility: its nature, measurement, and relationship to plant cell growth. New Phytol. 124, 1–23 (1993).

    Article  CAS  PubMed  Google Scholar 

  54. Cosgrove, D. J. Enzymes and other agents that enhance cell wall extensibility. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50, 391–417 (1999).

    Article  CAS  PubMed  Google Scholar 

  55. Rayle, D. L. & Cleland, R. E. Enhancement of wall loosening and elongation by acid solutions. Plant Physiol. 46, 250–253 (1970).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cosgrove, D. J. Characterization of long-term extension of isolated cell walls from growing cucumber hypocotyls. Planta 177, 121–130 (1989). Analyzes 'acid-growth' of isolated cell walls and hypothesizes a wall-loosening enzyme with unusual properties, later purified and named expansin.

    Article  CAS  PubMed  Google Scholar 

  57. Hager, A., Menzel, H. & Krauss, A. Versuche und hypothese zur primaerwirkung des auxins beim streckungswachstum. Planta 100, 47–75 (1971) (in German).

    Article  CAS  PubMed  Google Scholar 

  58. McQueen-Mason, S., Durachko, D. M. & Cosgrove, D. J. Two endogenous proteins that induce cell wall expansion in plants. Plant Cell 4, 1425–1433 (1992). Purification of two related proteins, later named expansins, that cause pH-dependent wall extension.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Link, B. M. & Cosgrove, D. J. Acid-growth response and α-expansins in suspension cultures of bright yellow 2 tobacco. Plant Physiol. 118, 907–916 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cosgrove, D. J. et al. The growing world of expansins. Plant Cell Physiol. 43, 1436–1444 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. Fleming, A. J., McQueen-Mason, S., Mandel, T. & Kuhlemeier, C. Induction of leaf primordia by the cell wall protein expansin. Science 276, 1415–1418 (1997).

    Article  CAS  Google Scholar 

  62. Pien, S., Wyrzykowska, J., McQueen-Mason, S., Smart, C. & Fleming, A. Local expression of expansin induces the entire process of leaf development and modifies leaf shape. Proc. Natl Acad. Sci. USA 98, 11812–11817 (2001). Used transient local micro-induction of EXPA genes on the shoot apical meristem and the flanks of leaf primordia to demonstrate that EXPA overexpression can markedly stimulate plant cell growth.

    Article  CAS  PubMed  Google Scholar 

  63. Cho, H. T. & Cosgrove, D. J. Altered expression of expansin modulates leaf growth and pedicel abscission in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 97, 9783–9788 (2000). Transgenic experiments to increase or reduce expansin gene expression, with results supporting expansin's role in cell growth and in abscission.

    Article  CAS  PubMed  Google Scholar 

  64. Choi, D., Lee, Y., Cho, H. T. & Kende, H. Regulation of expansin gene expression affects growth and development in transgenic rice plants. Plant Cell 15, 1386–1398 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zenoni, S. et al. Downregulation of the Petunia hybrida α-expansin gene PhEXP1 reduces the amount of crystalline cellulose in cell walls and leads to phenotypic changes in petal limbs. Plant Cell 16, 295–308 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Cho, H. T. & Kende, H. Expression of expansin genes is correlated with growth in deepwater rice. Plant Cell 9, 1661–1671 (1997). Shows that expression of certain EXPA genes in rice is increased upon submergence-induced internode elongation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Reinhardt, D., Wittwer, F., Mandel, T. & Kuhlemeier, C. Localized upregulation of a new expansin gene predicts the site of leaf formation in the tomato meristem. Plant Cell 10, 1427–1437 (1998). Shows that localized expression of an EXPA gene on the flanks of the shoot apical meristem precedes emergence of the leaf primordium.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Brummell, D. A., Harpster, M. H. & Dunsmuir, P. Differential expression of expansin gene family members during growth and ripening of tomato fruit. Plant Mol. Biol. 39, 161–169 (1999).

    Article  CAS  PubMed  Google Scholar 

  69. Vriezen, W. H., De Graaf, B., Mariani, C. & Voesenek, L. A. C. J. Submergence induces expansin gene expressin in flooding tolerant Rumex palustris and not in flooding intolerant R. acetosa. Planta 210, 956–963 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Lee, Y. & Kende, H. Expression of β-expansins is correlated with internodal elongation in deepwater rice. Plant Physiol 127, 645–654 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wu, Y., Thorne, E. T., Sharp, R. E. & Cosgrove, D. J. Modification of expansin transcript levels in the maize primary root at low water potentials. Plant Physiol. 126, 1471–1479 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Cho, H. T. & Cosgrove, D. J. Regulation of root hair initiation and expansin gene expression in Arabidopsis. Plant Cell 14, 3237–3253 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Chanliaud, E., de Silva, J., Strongitharm, B., Jeronimidis, G. & Gidley, M. J. Mechanical effects of plant cell wall enzymes on cellulose/xyloglucan composites. Plant J. 38, 27–37 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Cosgrove, D. J. Relaxation in a high-stress environment: The molecular bases of extensible cell walls and cell enlargement. Plant Cell 9, 1031–1041 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Shcherban, T. Y. et al. Molecular cloning and sequence analysis of expansins — a highly conserved, multigene family of proteins that mediate cell wall extension in plants. Proc. Natl Acad. Sci. USA 92, 9245–9249 (1995). Cloning of α-expansin ( EXPA ) showed that it belongs to a multigene family and lacks sequence similarity to any enzymes known at the time of publication.

    Article  CAS  PubMed  Google Scholar 

  76. McQueen-Mason, S. J. & Cosgrove, D. J. Expansin mode of action on cell walls. Analysis of wall hydrolysis, stress relaxation, and binding. Plant Physiol. 107, 87–100 (1995). Detailed biochemical and biophysical analysis of how α-expansins loosen plant cell walls.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. McQueen-Mason, S. & Cosgrove, D. J. Disruption of hydrogen bonding between plant cell wall polymers by proteins that induce wall extension. Proc. Natl Acad. Sci. USA 91, 6574–6578 (1994).

    Article  CAS  PubMed  Google Scholar 

  78. Li, L. C. & Cosgrove, D. J. Grass group I pollen allergens (β-expansins) lack proteinase activity and do not cause wall loosening via proteolysis. Eur. J. Biochem. 268, 4217–4226 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. Grobe, K., Becker, W. M. & Petersen, A. Grass group I allergens (β-expansins) are novel, papain-related proteinases. Eur. J. Biochem. 263, 33–40 (1999).

    Article  CAS  PubMed  Google Scholar 

  80. Poppelmann, M., Becker, W. M. & Petersen, A. Combination of zymography and immunodetection to analyze proteins in complex culture supernatants. Electrophoresis 23, 993–997 (2002).

    Article  CAS  PubMed  Google Scholar 

  81. Kende, H. et al. Nomenclature for members of the expansin superfamily of genes and proteins. Plant Mol. Biol. 55, 311–314 (2004). This article by the expansin research community defines expansins and recommends naming conventions.

    Article  CAS  PubMed  Google Scholar 

  82. Rose, J. K., Lee, H. H. & Bennett, A. B. Expression of a divergent expansin gene is fruit-specific and ripening-regulated. Proc. Natl Acad. Sci. USA 94, 5955–5960 (1997).

    Article  CAS  PubMed  Google Scholar 

  83. Brummell, D. A. et al. Modification of expansin protein abundance in tomato fruit alters softening and cell wall polymer metabolism during ripening. Plant Cell 11, 2203–2216 (1999). Transgenic tomato fruits with higher levels of LeEXPA1 gene expression were much softer than controls, whereas fruits with reduced LeEXPA1 expression were firmer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Belfield, E. J., Ruperti, B., Roberts, J. A. & McQueen-Mason, S. J. Changes in expansin activity and gene expression during ethylene-promoted leaflet abscission in Sambucus nigra. J. Exp. Bot. 56, 817–823 (2005).

    Article  CAS  PubMed  Google Scholar 

  85. Cosgrove, D. J., Bedinger, P. & Durachko, D. M. Group I allergens of grass pollen as cell wall-loosening agents. Proc. Natl Acad. Sci. USA 94, 6559–6564 (1997). Shows that group-1 grass pollen allergens have expansin activity and defines the second family of expansins (β-expansins).

    Article  CAS  PubMed  Google Scholar 

  86. Fry, S. C. et al. Xyloglucan endotransglycosylase, a new wall-loosening enzyme activity from plants. Biochem. J. 282, 821–828 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Antosiewicz, D. M., Purugganan, M. M., Polisensky, D. H. & Braam, J. Cellular localization of Arabidopsis xyloglucan endotransglycosylase- related proteins during development and after wind stimulation. Plant Physiol. 115, 1319–1328 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Thompson, J. E. & Fry, S. C. Trimming and solubilization of xyloglucan after deposition in the walls of cultured rose cells. J. Exp. Bot. 48, 297–305 (1997).

    Article  CAS  Google Scholar 

  89. Redgwell, R. J. & Fry, S. C. Xyloglucan endotransglycosylase activity increases during kiwifruit (Actinidia deliciosa) ripening (implications for fruit softening). Plant Physiol. 103, 1399–1406 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Farkas, V., Sulova, Z., Stratilova, E., Hanna, R. & Maclachlan, G. Cleavage of xyloglucan by nasturtium seed xyloglucanase and transglycosylation to xyloglucan subnit oligosaccharides. Arch. Biochem. Biophys. 298, 365–370 (1992).

    Article  CAS  PubMed  Google Scholar 

  91. Fanutti, C., Gidley, M. J. & Reid, J. S. G. Action of a pure xyloglucan endo-transglycosylase (formerly called xyloglucan-specific endo-1,4-β-D-glucanase) from the cotyledons of germinated nasturtium seeds. Plant J. 3, 691–700 (1993).

    Article  CAS  PubMed  Google Scholar 

  92. Bourquin, V. et al. Xyloglucan Endotransglycosylases have a function during the formation of secondary cell walls of vascular tissues. Plant Cell 14, 3073–3088 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Matsui, A. et al. AtXTH27 plays an essential role in cell wall modification during the development of tracheary elements. Plant J. 42, 525–534 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. McQueen-Mason, S. J., Fry, S. C., Durachko, D. M. & Cosgrove, D. J. The relationship between xyloglucan endotransglycosylase and in-vitro cell wall extension in cucumber hypocotyls. Planta 190, 327–331 (1993).

    Article  CAS  PubMed  Google Scholar 

  95. Cutillas-Iturralde, A. & Lorences, E. P. Effect of xyloglucan oligosaccharides on growth, viscoelastic properties, and long-term extension of pea shoots. Plant Physiol. 113, 103–109 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kaku, T., Tabuchi, A., Wakabayashi, K., Kamisaka, S. & Hoson, T. Action of xyloglucan hydrolase within the native cell wall architecture and its effect on cell wall extensibility in azuki bean epicotyls. Plant Cell Physiol. 43, 21–26 (2002).

    Article  CAS  PubMed  Google Scholar 

  97. Fry, S. C. In vivo formation of xyloglucan nonasaccharide — a possible biologically-active cell-wall fragment. Planta 169, 443–453 (1986).

    Article  CAS  PubMed  Google Scholar 

  98. Ito, H. & Nishitani, K. Visualization of EXGT-mediated molecular grafting activity by means of a fluorescent-labeled xyloglucan oligomer. Plant Cell Physiol. 40, 1172–1176 (1999).

    Article  CAS  Google Scholar 

  99. Fry, S. C. Novel 'dot-blot' assays for glycosyltransferases and glycosylhydrolases: optimization for xyloglucan endotransglycosylase (XET) activity. Plant J. 11, 1141–1150 (1997).

    Article  CAS  Google Scholar 

  100. Vissenberg, K., Fry, S. C. & Verbelen, J. P. Root hair initiation is coupled to a highly localized increase of xyloglucan endotransglycosylase action in Arabidopsis roots. Plant Physiol. 127, 1125–1135 (2001). Uses fluorescent xylo-oligosaccharide to identify local sites of XET action, which in this case is site of the future bulge formation where a root hair is initiated.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Vissenberg, K. et al. Differential expression of AtXTH17, AtXTH18, AtXTH19 and AtXTH20 genes in Arabidopsis roots. Physiological roles in specification in cell wall construction. Plant Cell Physiol. 46, 192–200 (2005).

    Article  CAS  PubMed  Google Scholar 

  102. Vissenberg, K., Fry, S. C., Pauly, M., Hofte, H. & Verbelen, J. P. XTH acts at the microfibril-matrix interface during cell elongation. J. Exp. Bot. 56, 673–683 (2005).

    Article  CAS  PubMed  Google Scholar 

  103. Potter, I. & Fry, S. C. Changes in xyloglucan endotransglycosylase (XET) activity during hormone-induced growth in lettuce and cucumber hypocotyls and spinach cell suspension cultures. J. Exp. Bot. 45, 1703–1710 (1994).

    Article  CAS  Google Scholar 

  104. Hyodo, H. et al. Active gene expression of a xyloglucan endotransglucosylase/hydrolase gene, XTH9, in inflorescence apices is related to cell elongation in Arabidopsis thaliana. Plant Mol. Biol. 52, 473–482 (2003).

    Article  CAS  PubMed  Google Scholar 

  105. Yokoyama, R., Rose, J. K. & Nishitani, K. A surprising diversity and abundance of xyloglucan endotransglucosylase/hydrolases in rice. Classification and expression analysis. Plant Physiol. 134, 1088–1099 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Herbers, K., Lorences, E. P., Barrachina, C. & Sonnewald, U. Functional characterisation of Nicotiana tabacum xyloglucan endotransglycosylase (NtXET-1): generation of transgenic tobacco plants and changes in cell wall xyloglucan. Planta 212, 279–287 (2001).

    Article  CAS  PubMed  Google Scholar 

  107. Rose, J. K. C., Catala, C., Gonzalez-Carranza, Z. H. & Roberts, J. A. The Plant Cell Wall (ed. Rose, J. K. C.) 264–324 (Blackwell, Oxford, 2003).

    Google Scholar 

  108. Libertini, E., Li, Y. & McQueen-Mason, S. J. Phylogenetic analysis of the plant endo-β-1,4-glucanase gene family. J. Mol. Evol. 58, 506–515 (2004).

    Article  CAS  PubMed  Google Scholar 

  109. Ohmiya, Y. et al. Evidence that endo-1,4-β-glucanases act on cellulose in suspension- cultured poplar cells. Plant J. 24, 147–158 (2000).

    Article  CAS  PubMed  Google Scholar 

  110. Ohmiya, Y., Takeda, T., Nakamura, S., Sakai, F. & Hayashi, T. Purification and properties of a wall-bound endo-1, 4-β-glucanase from suspension-cultured poplar cells. Plant Cell Physiol. 36, 607–614 (1995).

    CAS  PubMed  Google Scholar 

  111. Tsabary, G. et al. Abnormal 'wrinkled' cell walls and retarded development of transgenic Arabidopsis thaliana plants expressing endo-1,4-β-glucanase (cell) antisense. Plant Mol. Biol. 51, 213–224 (2003).

    Article  CAS  PubMed  Google Scholar 

  112. Fry, S. C., Miller, J. G. & Dumville, J. C. A proposed role for copper ions in cell wall loosening. Plant Soil 247, 57–67 (2002).

    Article  CAS  Google Scholar 

  113. Fry, S. C. Oxidative scission of plant cell wall polysaccharides by ascorbate-induced hydroxyl radicals. Biochem. J. 332, 507–515 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Liszkay, A. & Schopfer, P. Plasma membrane-generated superoxide anion radicals and peroxidase-generated hydroxyl radicals may be involved in the growth of coleoptiles. Free Radic. Res. 37, 26–27 (2003).

    Google Scholar 

  115. Liszkay, A., Kenk, B. & Schopfer, P. Evidence for the involvement of cell wall peroxidase in the generation of hydroxyl radicals mediating extension growth. Planta 217, 658–667 (2003).

    Article  CAS  PubMed  Google Scholar 

  116. Schopfer, P., Liszkay, A., Bechtold, M., Frahry, G. & Wagner, A. Evidence that hydroxyl radicals mediate auxin-induced extension growth. Planta 214, 821–828 (2002).

    Article  CAS  PubMed  Google Scholar 

  117. Miller, J. G. & Fry, S. C. Characteristics of xyloglucan after attack by hydroxyl radicals. Carbohydr. Res. 332, 389–403 (2001).

    Article  CAS  PubMed  Google Scholar 

  118. Dumville, J. C. & Fry, S. C. Solubilisation of tomato fruit pectins by ascorbate: a possible non-enzymic mechanism of fruit softening. Planta 217, 951–961 (2003).

    Article  CAS  PubMed  Google Scholar 

  119. Ridley, B. L., O'Neill, M. A. & Mohnen, D. Pectins: structure, biosynthesis, and oligogalacturonide-related signaling. Phytochem. 57, 929–967 (2001).

    Article  CAS  Google Scholar 

  120. Jones, L., Milne, J. L., Ashford, D. & McQueen-Mason, S. J. Cell wall arabinan is essential for guard cell function. Proc. Natl Acad. Sci. USA 100, 11783–11788 (2003).

    Article  CAS  PubMed  Google Scholar 

  121. Zykwinska, A. W., Ralet, M. C., Garnier, C. D. & Thibault, J. F. Evidence for in vitro binding of pectin side chains to cellulose. Plant Physiol. 139, 397–407 (2005). Neutral pectins, such as arabinans, bind to cellulose surfaces, implying that pectin might crosslink cellulose microfibrils.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Baba, K., Sone, Y., Misaki, A. & Hayashi, T. Localization of xyloglucan in the macromolecular complex composed of xyloglucan and cellulose in pea stems. Plant Cell Physiol. 35, 439–444 (1994).

    Google Scholar 

  123. Hayashi, T., Ogawa, K. & Mitsuishi, Y. Characterization of the adsorption of xyloglucan to cellulose. Plant Cell Physiol. 35, 1199–1205 (1994).

    Article  CAS  Google Scholar 

  124. Park, Y. W. et al. Enhancement of growth by expression of poplar cellulase in Arabidopsis thaliana. Plant J. 33, 1099–1106 (2003).

    Article  CAS  PubMed  Google Scholar 

  125. Keegstra, K., Talmadge, K. W., Bauer, W. D. & Albersheim, P. The structure of plant cell walls. III. A model of the walls of suspension-cultured sycamore cells based on the interconnections of the macromolecular components. Plant Physiol. 51, 188–196 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Thompson, J. E. & Fry, S. C. Evidence for covalent linkage between xyloglucan and acidic pectins in suspension-cultured rose cells. Planta 211, 275–286 (2000).

    Article  CAS  PubMed  Google Scholar 

  127. Cumming, C. M. et al. Biosynthesis and cell-wall deposition of a pectin-xyloglucan complex in pea. Planta (2005) (10.1007/s00425-005-1560-2).

  128. Ye, Z. H. & Varner, J. E. Differential expression of two O-methyltransferases in lignin biosynthesis in Zinnia elegans. Plant Physiol. 108, 459–467 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Troughton, J. & Donaldson, L. A. Probing Plant Structure. (McGraw-Hill, New York 1972).

    Google Scholar 

  130. McCann, M. C., Wells, B. & Roberts, K. Direct visualization of cross-links in the primary plant cell wall. J. Cell Sci 96, 323–334 (1990).

    Google Scholar 

  131. Rizk, S. E., Abdel-Massih, R. M., Baydoun, E. A. & Brett, C. T. Protein- and pH-dependent binding of nascent pectin and glucuronoarabinoxylan to xyloglucan in pea. Planta 211, 423–429 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I gratefully acknowledge the research contributions of numerous students and colleagues, particularly D. M. Durachko, M. Perich, L.-C. Li, S. McQueen-Mason, T. Shcherban, S. Yuang, and Y. Wu. Our research is supported by grants from the National Science Foundation, the National Institutes of Health and the Department of Energy.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Supplementary information

Related links

Related links

DATABASES

TAIR

CESA1

CESA2

CESA3

CESA4

CESA5

CESA6

KORRIGAN

FURTHER INFORMATION

CCRC Cell Wall Page

Cell Wall Genomics (Purdue)

WallBioNet (MSU)

Carbohydrate-Active EnZYmes

Cellulose synthase-like

XTH

Expansins

Daniel Cosgrove's laboratory

Glossary

PROTOPLASM

The contents of living cells, including cytoplasm and nucleus.

CREEP

Slow, time-dependent, irreversible extension, in which the microfibrils and associated matrix polysaccharides slowly slide within the wall, therefore increasing its surface area.

XYLEM

A tissue that comprises a group of specialized cells that are involved in the transport of water and solutes in vascular plants. Mature xylem vessels essentially contain only the cell wall.

MERISTEM

Region of rapid cell division on a plant; it is where cell initials (or 'stem' cells) are maintained and organogenesis starts. Root meristems, shoot meristems and flower meristems fit this description.

VACUOLE

A membrane-bound cellular compartment, usually filled with a dilute watery solution. Mature plant cells often have very large central vacuoles.

WALL LOOSENING

Modification of the cell wall that enables it to extend in response to the wall stress that is generated by cell turgor.

PRIMARY CELL WALL

The flexible extracellular matrix that is deposited while the cell is expanding.

SECONDARY CELL WALL

The flexible extracellular matrix that is deposited while the cell is still expanding is known as the primary cell wall. When expansion ceases, a secondary wall is sometimes laid down inside the primary wall, making it stronger.

CELLULOSE MICROFIBRIL

A tough, inelastic fibre wrapped in layers (lamellae) within the plant cell wall. Composed of (1,4)-linked β-D-glucosyl residues.

PECTINS

Group of complex polysaccharides that are extracted from the cell wall by hot water, dilute acid or calcium chelators. They include homogalacturonan, rhamnogalacturonans I and II, galactans, arabinans and other polysaccharides.

HEMICELLULOSES

Group of complex polysaccharides, including xyloglucans, xylans and mannans, that are extracted from plant cell walls by use of strong alkali; characteristically they bind tightly to the surface of cellulose and have a backbone made up of (1,4)-β-D-glycans that resembles cellulose.

POROSITY

Property that indicates how readily gases, liquids and other materials can penetrate an object.

MIDDLE LAMELLA

The thin layer that connects two plant cells and is rich in pectin.

MATRIX POLYSACCHARIDES

Complex polysaccharides found in the space between cellulose microfibrils. They are traditionally divided into pectins and hemicelluloses.

TURGOR PRESSURE

Force generated by water pushing outward on the plasma membrane and plant cell wall, that results in plant rigidity. The loss of turgor pressure causes wilting.

STEROL GLUCOSIDE

A molecule consisting of a sterol that is linked to glucose through a glycosidic bond.

β-D-GLYCAN

A polymer built up of sugar residues connected by glycosidic bonds; β-D- identifies the particular stereochemical configuration of the sugar.

ENDOTRANSGLYCOSYLASES

Enzymes that cut a glycan and ligate one of the fragments to the free end of another polymer, usually of the same type.

DOUBLE-LABELLING EXPERIMENTS

Experiments in which two different tags (such as the radioisotopes 3H and 14C) are incorporated in and attached to a molecule. Useful for tracing the origin and fate of a molecule that undergoes complicated processing.

WALL STRESS RELAXATION

Reduction in mechanical stress in the cell-wall network, because of slippage or scission of load-bearing polymers in the cell wall; wall loosening stimulates wall stress relaxation.

HYDROXYL RADICAL

The most active form of reactive oxygen species, consisting of a free hydroxyl group in which oxygen is missing an electron in its outermost shell. It is a strong oxidant that can steal an electron from — and thereby damage — polysaccharides, proteins, lipids, nucleic acids and other classes of organic molecules.

ACID GROWTH

Faster cell elongation under acidic conditions.

EXPANSINS

Wall loosening proteins that induce wall stress relaxation and irreversible wall extension in a pH-dependent manner, but they do not hydrolyze wall polymers.

COORDINATE BOND

Chemical bond involving the sharing of a pair of electrons, each supplied by one atom.

ABSCISSION

The process by which old parts of a plant break off naturally (for example, leaves).

BIAXIAL STRAIN ASSAYS

Procedures in which a material is stretched not in one direction, but in two directions, as happens with the membrane of an expanding balloon.

HYPOCOTYLS

The stem region of a seedling below the cotyledons (seed leaves).

TRACHEARY ELEMENTS

Specialized cells in the xylem of vascular plants that are responsible for the conductance of water as well as providing mechanical support.

PARALOGUES

Genes or gene families that originated from a common ancestral sequence by a duplication event, not involving speciation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cosgrove, D. Growth of the plant cell wall. Nat Rev Mol Cell Biol 6, 850–861 (2005). https://doi.org/10.1038/nrm1746

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1746

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing