Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanotransduction in development: a growing role for contractility

Key Points

  • Traditionally, mechanotransduction research has studied the response of cells to applied forces. However, recent studies have shown that forces exerted through actomyosin-generated contractility can also trigger cellular signalling. Here, the role of such cell-generated forces is examined in the context of embryogenesis.

  • Embryogenesis can be described as the coordinated regulation of three basic cellular processes: proliferation, differentiation and spatial rearrangements of cells. There is evidence from both in vitro and in vivo systems that contractile forces regulate each of these cellular processes.

  • Mechanical cues regulate proliferation, at least in part, through regulation of RhoA-mediated cellular contractility. Both mathematical modelling of in vivo embryonic events and in vitro experimental evidence confirms that the mechanical stresses distributed throughout a tissue regulate localized proliferation; blocking contractility abrogates this growth regulation. In vitro work has further shown that both cytoskeletal tension and cell shape changes — both of which impinge on the RhoA–Rho kinase (ROCK) pathway — regulate proliferation.

  • Mechanotransduction and contractility regulate differentiation in vitro and in vivo. An interesting example is the stomodeal tissue compression that is caused by germband extension movements during Drosophila melanogaster gastrulation, which are proposed to activate Twist, an important regulator of differentiation of the digestive tract. Twist can then activate contractility downstream of Rho–ROCK activity to regulate apical constriction during mesoderm invagination.

  • The spatial organization of cells during development is highly regulated by cell-generated mechanical forces; this regulation is crucial for maintaining proper tissue structure and function. Examples of this regulation are tension-mediated serum response factor activity in D. melanogaster, Wnt activation of RhoA and contractility in Caenorhabditis elegans, Xenopus laevis and zebrafish, and contractility-driven zebrafish cell sorting and D. melanogaster intercalation.

  • Characterizing and manipulating forces in vivo is complicated. It will be important for the field to be able to draw from in vitro mechanotransduction studies to help interpret how cell-generated contractility and mechanical cues regulate developmental behaviours in vivo.

Abstract

Mechanotransduction research has focused historically on how externally applied forces can affect cell signalling and function. A growing body of evidence suggests that contractile forces that are generated internally by the actomyosin cytoskeleton are also important in regulating cell behaviour, and suggest a broader role for mechanotransduction in biology. Although the molecular basis for these cellular forces in mechanotransduction is being pursued in cell culture, researchers are also beginning to appreciate their contribution to in vivo developmental processes. Here, we examine the role for mechanical forces and contractility in regulating cell and tissue structure and function during development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Forces that regulate Drosophila melanogaster dorsal closure.
Figure 2: Cell shape regulates proliferation through the small GTPase RhoA.
Figure 3: Mechanical regulation of twist gene expression.
Figure 4: Forces regulate the spatial organization of cells.

Similar content being viewed by others

References

  1. Thompson, D. W. On Growth and Form (Cambridge Univ. Press, Cambridge, UK, 1917).

    Book  Google Scholar 

  2. His, W. in Unsere Körperform und das Physiologische Problem ihrer Entstehung (Vogel, Leipzig, Germany, 1874).

    Google Scholar 

  3. Vogel, V. & Sheetz, M. Local force and geometry sensing regulate cell functions. Nature Rev. Mol. Cell Biol. 7, 265–275 (2006).

    Article  CAS  Google Scholar 

  4. Adams, D. S., Keller, R. & Koehl, M. A. The mechanics of notochord elongation, straightening and stiffening in the embryo of Xenopus laevis. Development 110, 115–130 (1990).

    Article  CAS  PubMed  Google Scholar 

  5. Keller, R. & Jansa, S. Xenopus gastrulation without a blastocoel roof. Dev. Dyn. 195, 162–176 (1992).

    Article  CAS  PubMed  Google Scholar 

  6. Moore, S. W., Keller, R. E. & Koehl, M. A. The dorsal involuting marginal zone stiffens anisotropically during its convergent extension in the gastrula of Xenopus laevis. Development 121, 3131–3140 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Wiebe, C. & Brodland, G. W. Tensile properties of embryonic epithelia measured using a novel instrument. J. Biomech. 38, 2087–2094 (2005).

    Article  PubMed  Google Scholar 

  8. von Dassow, M. & Davidson, L. A. Variation and robustness of the mechanics of gastrulation: the role of tissue mechanical properties during morphogenesis. Birth Defects Res. C Embryo Today 81, 253–269 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Levental, I., Georges, P. & Janmey, P. Soft biological materials and their impact on cell function. Soft Matter 3, 299–306 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Pasternak, C., Spudich, J. A. & Elson, E. L. Capping of surface receptors and concomitant cortical tension are generated by conventional myosin. Nature 341, 549–551 (1989).

    Article  CAS  PubMed  Google Scholar 

  11. Pelham, R. J. Jr & Wang, Y. Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc. Natl Acad. Sci. USA 94, 13661–13665 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Engler, A. J. et al. Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments. J. Cell Biol. 166, 877–887 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Paszek, M. J. et al. Tensional homeostasis and the malignant phenotype. Cancer Cell 8, 241–254 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Wells, R. G. The role of matrix stiffness in regulating cell behavior. Hepatology 47, 1394–1400 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Hove, J. R. et al. Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis. Nature 421, 172–177 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Keller, R. & Danilchik, M. Regional expression, pattern and timing of convergence and extension during gastrulation of Xenopus laevis. Development 103, 193–209 (1988).

    Article  CAS  PubMed  Google Scholar 

  18. Priess, J. R. & Hirsh, D. I. Caenorhabditis elegans morphogenesis: the role of the cytoskeleton in elongation of the embryo. Dev. Biol. 117, 156–173 (1986).

    Article  CAS  PubMed  Google Scholar 

  19. Williams-Masson, E. M., Malik, A. N. & Hardin, J. An actin-mediated two-step mechanism is required for ventral enclosure of the C. elegans hypodermis. Development 124, 2889–2901 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Hardin, J. The role of secondary mesenchyme cells during sea urchin gastrulation studied by laser ablation. Development 103, 317–324 (1988).

    Article  CAS  PubMed  Google Scholar 

  21. Hutson, M. S. et al. Forces for morphogenesis investigated with laser microsurgery and quantitative modeling. Science 300, 145–149 (2003). Used sophisticated laser ablation techniques and mathematical modelling to show that multiple areas of the D. melanogaster embryo, including the amnioserosa and adjacent epithelium, contribute to the force generation that is needed for dorsal closure.

    Article  CAS  PubMed  Google Scholar 

  22. Kiehart, D. P., Galbraith, C. G., Edwards, K. A., Rickoll, W. L. & Montague, R. A. Multiple forces contribute to cell sheet morphogenesis for dorsal closure in Drosophila. J. Cell Biol. 149, 471–490 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Peralta, X. G. et al. Upregulation of forces and morphogenic asymmetries in dorsal closure during Drosophila development. Biophys. J. 92, 2583–2596 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Davidson, L. & Keller, R. Measuring mechanical properties of embryos and embryonic tissues. Methods Cell Biol. 83, 425–439 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Supatto, W. et al. In vivo modulation of morphogenetic movements in Drosophila embryos with femtosecond laser pulses. Proc. Natl Acad. Sci. USA 102, 1047–1052 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Franke, J. D., Montague, R. A. & Kiehart, D. P. Nonmuscle myosin II generates forces that transmit tension and drive contraction in multiple tissues during dorsal closure. Curr. Biol. 15, 2208–2221 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Toyama, Y., Peralta, X. G., Wells, A. R., Kiehart, D. P. & Edwards, G. S. Apoptotic force and tissue dynamics during Drosophila embryogenesis. Science 321, 1683–1686 (2008). Provides the first evidence that apoptosis contributes between one-half to one-third of the forces needed for D. melanogaster dorsal closure.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rosenblatt, J., Raff, M. C. & Cramer, L. P. An epithelial cell destined for apoptosis signals its neighbors to extrude it by an actin- and myosin-dependent mechanism. Curr. Biol. 11, 1847–1857 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Davidson, L. A. Developmental biology. Apoptosis turbocharges epithelial morphogenesis. Science 321, 1641–1642 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang, Y. & Riechmann, V. The role of the actomyosin cytoskeleton in coordination of tissue growth during Drosophila oogenesis. Curr. Biol. 17, 1349–1355 (2007).

    Article  PubMed  CAS  Google Scholar 

  31. Lecuit, T. & Le Goff, L. Orchestrating size and shape during morphogenesis. Nature 450, 189–192 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Shraiman, B. I. Mechanical feedback as a possible regulator of tissue growth. Proc. Natl Acad. Sci. USA 102, 3318–3323 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hufnagel, L., Teleman, A. A., Rouault, H., Cohen, S. M. & Shraiman, B. I. On the mechanism of wing size determination in fly development. Proc. Natl Acad. Sci. USA 104, 3835–3840 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ingber, D. E., Madri, J. A. & Jamieson, J. D. Role of basal lamina in neoplastic disorganization of tissue architecture. Proc. Natl Acad. Sci. USA 78, 3901–3905 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nelson, C. M. et al. Emergent patterns of growth controlled by multicellular form and mechanics. Proc. Natl Acad. Sci. USA 102, 11594–11599 (2005). First experimental demonstration that the forces transmitted through epithelial monolayers can regulate localized proliferation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hara, K., Tydeman, P. & Kirschner, M. A cytoplasmic clock with the same period as the division cycle in Xenopus eggs. Proc. Natl Acad. Sci. USA 77, 462–466 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kimelman, D., Kirschner, M. & Scherson, T. The events of the midblastula transition in Xenopus are regulated by changes in the cell cycle. Cell 48, 399–407 (1987).

    Article  CAS  PubMed  Google Scholar 

  38. Peyton, S. R., Raub, C. B., Keschrumrus, V. P. & Putnam, A. J. The use of poly(ethylene glycol) hydrogels to investigate the impact of ECM chemistry and mechanics on smooth muscle cells. Biomaterials 27, 4881–4893 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Iwamoto, H. et al. A p160ROCK-specific inhibitor, Y-27632, attenuates rat hepatic stellate cell growth. J. Hepatol. 32, 762–770 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Chrzanowska-Wodnicka, M. & Burridge, K. Rho-stimulated contractility drives the formation of stress fibers and focal adhesions. J. Cell Biol. 133, 1403–1415 (1996).

    Article  CAS  PubMed  Google Scholar 

  41. Olson, M. F., Ashworth, A. & Hall, A. An essential role for Rho, Rac, and Cdc42 GTPases in cell cycle progression through G1. Science 269, 1270–1272 (1995).

    Article  CAS  PubMed  Google Scholar 

  42. Amano, M. et al. Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase). J. Biol. Chem. 271, 20246–20249 (1996).

    Article  CAS  PubMed  Google Scholar 

  43. Kimura, K. et al. Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science 273, 245–248 (1996).

    Article  CAS  PubMed  Google Scholar 

  44. Kureishi, Y. et al. Rho-associated kinase directly induces smooth muscle contraction through myosin light chain phosphorylation. J. Biol. Chem. 272, 12257–12260 (1997).

    Article  CAS  PubMed  Google Scholar 

  45. Seasholtz, T. M., Majumdar, M., Kaplan, D. D. & Brown, J. H. Rho and Rho kinase mediate thrombin-stimulated vascular smooth muscle cell DNA synthesis and migration. Circ. Res. 84, 1186–1193 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Zhao, Z. & Rivkees, S. A. Rho-associated kinases play an essential role in cardiac morphogenesis and cardiomyocyte proliferation. Dev. Dyn. 226, 24–32 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Croft, D. R. & Olson, M. F. The Rho GTPase effector ROCK regulates cyclin A, cyclin D1, and p27Kip1 levels by distinct mechanisms. Mol. Cell. Biol. 26, 4612–4627 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. McBeath, R., Pirone, D. M., Nelson, C. M., Bhadriraju, K. & Chen, C. S. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell 6, 483–495 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Liu, W. F., Nelson, C. M., Tan, J. L. & Chen, C. S. Cadherins, RhoA, and Rac1 are differentially required for stretch-mediated proliferation in endothelial versus smooth muscle cells. Circ. Res. 101, e44–e52 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Numaguchi, K., Eguchi, S., Yamakawa, T., Motley, E. D. & Inagami, T. Mechanotransduction of rat aortic vascular smooth muscle cells requires RhoA and intact actin filaments. Circ. Res. 85, 5–11 (1999).

    Article  CAS  PubMed  Google Scholar 

  51. Dawes-Hoang, R. E. et al. Folded gastrulation, cell shape change and the control of myosin localization. Development 132, 4165–4178 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Folkman, J. & Moscona, A. Role of cell shape in growth control. Nature 273, 345–349 (1978). Shows, for the first time, that the extent of cell spreading can regulate cell proliferation.

    Article  CAS  PubMed  Google Scholar 

  53. Ingber, D. E. Fibronectin controls capillary endothelial cell growth by modulating cell shape. Proc. Natl Acad. Sci. USA 87, 3579–3583 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chen, C. S., Mrksich, M., Huang, S., Whitesides, G. M. & Ingber, D. E. Geometric control of cell life and death. Science 276, 1425–1428 (1997).

    Article  CAS  PubMed  Google Scholar 

  55. Huang, S., Chen, C. S. & Ingber, D. E. Control of cyclin D1, p27Kip1, and cell cycle progression in human capillary endothelial cells by cell shape and cytoskeletal tension. Mol. Biol. Cell 9, 3179–3193 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mammoto, A., Huang, S., Moore, K., Oh, P. & Ingber, D. E. Role of RhoA, mDia, and ROCK in cell shape-dependent control of the Skp2–p27kip1 pathway and the G1/S transition. J. Biol. Chem. 279, 26323–26330 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Pirone, D. M. et al. An inhibitory role for FAK in regulating proliferation: a link between limited adhesion and RhoA–ROCK signaling. J. Cell Biol. 174, 277–288 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tan, J. L. et al. Cells lying on a bed of microneedles: an approach to isolate mechanical force. Proc. Natl Acad. Sci. USA 100, 1484–1489 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ilizarov, G. A. The tension–stress effect on the genesis and growth of tissues. Part I. The influence of stability of fixation and soft-tissue preservation. Clin. Orthop. Relat. Res. 238, 249–281 (1989).

    Article  Google Scholar 

  60. Desprat, N., Supatto, W., Pouille, P. A., Beaurepaire, E. & Farge, E. Tissue deformation modulates twist expression to determine anterior midgut differentiation in Drosophila embryos. Dev. Cell 15, 470–477 (2008).

    Article  CAS  PubMed  Google Scholar 

  61. Farge, E. Mechanical induction of Twist in the Drosophila foregut/stomodeal primordium. Curr. Biol. 13, 1365–1377 (2003). Shows that mechanical deformation can generate twist expression in D. melanogaster embryos.

    Article  CAS  PubMed  Google Scholar 

  62. Reuter, R. & Leptin, M. Interacting functions of snail, twist and huckebein during the early development of germ layers in Drosophila. Development 120, 1137–1150 (1994).

    Article  CAS  PubMed  Google Scholar 

  63. Leptin, M. & Grunewald, B. Cell shape changes during gastrulation in Drosophila. Development 110, 73–84 (1990).

    Article  CAS  PubMed  Google Scholar 

  64. Costa, M., Wilson, E. T. & Wieschaus, E. A putative cell signal encoded by the folded gastrulation gene coordinates cell shape changes during Drosophila gastrulation. Cell 76, 1075–1089 (1994).

    Article  CAS  PubMed  Google Scholar 

  65. Rogers, S. L., Wiedemann, U., Hacker, U., Turck, C. & Vale, R. D. Drosophila RhoGEF2 associates with microtubule plus ends in an EB1-dependent manner. Curr. Biol. 14, 1827–1833 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Kolsch, V., Seher, T., Fernandez-Ballester, G. J., Serrano, L. & Leptin, M. Control of Drosophila gastrulation by apical localization of adherens junctions and RhoGEF2. Science 315, 384–386 (2007).

    Article  PubMed  CAS  Google Scholar 

  67. Brouzes, E., Supatto, W. & Farge, E. Is mechano-sensitive expression of twist involved in mesoderm formation? Biol. Cell 96, 471–477 (2004).

    Article  PubMed  Google Scholar 

  68. Sordella, R., Jiang, W., Chen, G. C., Curto, M. & Settleman, J. Modulation of Rho GTPase signaling regulates a switch between adipogenesis and myogenesis. Cell 113, 147–158 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Spiegelman, B. M. & Ginty, C. A. Fibronectin modulation of cell shape and lipogenic gene expression in 3T3-adipocytes. Cell 35, 657–666 (1983).

    Article  CAS  PubMed  Google Scholar 

  70. Emerman, J. T., Bartley, J. C. & Bissell, M. J. Glucose metabolite patterns as markers of functional differentiation in freshly isolated and cultured mouse mammary epithelial cells. Exp. Cell Res. 134, 241–250 (1981).

    Article  CAS  PubMed  Google Scholar 

  71. Emerman, J. T. & Pitelka, D. R. Maintenance and induction of morphological differentiation in dissociated mammary epithelium on floating collagen membranes. In Vitro 13, 316–328 (1977).

    Article  CAS  PubMed  Google Scholar 

  72. Lee, E. Y., Parry, G. & Bissell, M. J. Modulation of secreted proteins of mouse mammary epithelial cells by the collagenous substrata. J. Cell Biol. 98, 146–155 (1984).

    Article  CAS  PubMed  Google Scholar 

  73. Bell, E., Ivarsson, B. & Merrill, C. Production of a tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliferative potential in vitro. Proc. Natl Acad. Sci. USA 76, 1274–1278 (1979). References 70–73 show that the presentation of the ECM regulates cell differentiation in vitro and show a key role for matrix contraction in differentiation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Grinnell, F., Ho, C. H., Tamariz, E., Lee, D. J. & Skuta, G. Dendritic fibroblasts in three-dimensional collagen matrices. Mol. Biol. Cell 14, 384–395 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Moore, K. A. et al. Control of basement membrane remodeling and epithelial branching morphogenesis in embryonic lung by Rho and cytoskeletal tension. Dev. Dyn. 232, 268–281 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. Wozniak, M. A., Desai, R., Solski, P. A., Der, C. J. & Keely, P. J. ROCK-generated contractility regulates breast epithelial cell differentiation in response to the physical properties of a three-dimensional collagen matrix. J. Cell Biol. 163, 583–595 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Grinnell, F., Ho, C. H., Lin, Y. C. & Skuta, G. Differences in the regulation of fibroblast contraction of floating versus stressed collagen matrices. J. Biol. Chem. 274, 918–923 (1999).

    Article  CAS  PubMed  Google Scholar 

  78. Montell, D. J. The social lives of migrating cells in Drosophila. Curr. Opin. Genet. Dev. 16, 374–383 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Montell, D. J. Border-cell migration: the race is on. Nature Rev. Mol. Cell Biol. 4, 13–24 (2003).

    Article  CAS  Google Scholar 

  80. Miralles, F., Posern, G., Zaromytidou, A. I. & Treisman, R. Actin dynamics control SRF activity by regulation of its coactivator MAL. Cell 113, 329–342 (2003).

    Article  CAS  PubMed  Google Scholar 

  81. Sun, Q. et al. Defining the mammalian CArGome. Genome Res. 16, 197–207 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Somogyi, K. & Rorth, P. Evidence for tension-based regulation of Drosophila MAL and SRF during invasive cell migration. Dev. Cell 7, 85–93 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Rorth, P., Szabo, K. & Texido, G. The level of C/EBP protein is critical for cell migration during Drosophila oogenesis and is tightly controlled by regulated degradation. Mol. Cell 6, 23–30 (2000).

    Article  CAS  PubMed  Google Scholar 

  84. Hellstrand, P. & Albinsson, S. Stretch-dependent growth and differentiation in vascular smooth muscle: role of the actin cytoskeleton. Can. J. Physiol. Pharmacol. 83, 869–875 (2005).

    Article  CAS  PubMed  Google Scholar 

  85. Cadigan, K. M. & Liu, Y. I. Wnt signaling: complexity at the surface. J. Cell Sci. 119, 395–402 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Gong, Y., Mo, C. & Fraser, S. E. Planar cell polarity signalling controls cell division orientation during zebrafish gastrulation. Nature 430, 689–693 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. Lee, J. Y. et al. Wnt/Frizzled signaling controls C. elegans gastrulation by activating actomyosin contractility. Curr. Biol. 16, 1986–1997 (2006). Provides evidence that Wnt signalling directly regulates contractility to control apical constriction during C. elegans gastrulation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wallingford, J. B. et al. Dishevelled controls cell polarity during Xenopus gastrulation. Nature 405, 81–85 (2000).

    Article  CAS  PubMed  Google Scholar 

  89. Heisenberg, C. P. et al. Silberblick/Wnt11 mediates convergent extension movements during zebrafish gastrulation. Nature 405, 76–81 (2000).

    Article  CAS  PubMed  Google Scholar 

  90. Habas, R., Kato, Y. & He, X. Wnt/Frizzled activation of Rho regulates vertebrate gastrulation and requires a novel formin homology protein Daam1. Cell 107, 843–854 (2001).

    Article  CAS  PubMed  Google Scholar 

  91. Marlow, F., Topczewski, J., Sepich, D. & Solnica-Krezel, L. Zebrafish Rho kinase 2 acts downstream of Wnt11 to mediate cell polarity and effective convergence and extension movements. Curr. Biol. 12, 876–884 (2002).

    Article  CAS  PubMed  Google Scholar 

  92. Liu, W. et al. Mechanism of activation of the formin protein Daam1. Proc. Natl Acad. Sci. USA 105, 210–215 (2008).

    Article  CAS  PubMed  Google Scholar 

  93. Wallingford, J. B. & Habas, R. The developmental biology of Dishevelled: an enigmatic protein governing cell fate and cell polarity. Development 132, 4421–4436 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. Lau, K. H., Kapur, S., Kesavan, C. & Baylink, D. J. Up-regulation of the Wnt, estrogen receptor, insulin-like growth factor-I, and bone morphogenetic protein pathways in C57BL/56J osteoblasts as opposed to C3H/HeJ osteoblasts in part contributes to the differential anabolic response to fluid shear. J. Biol. Chem. 281, 9576–9588 (2006).

    Article  CAS  PubMed  Google Scholar 

  95. Sawakami, K. et al. The Wnt co-receptor LRP5 is essential for skeletal mechanotransduction but not for the anabolic bone response to parathyroid hormone treatment. J. Biol. Chem. 281, 23698–23711 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Steinberg, M. S. & Garrod, D. R. Observations on the sorting-out of embryonic cells in monolayer culture. J. Cell Sci. 18, 385–403 (1975).

    Article  CAS  PubMed  Google Scholar 

  97. Krieg, M. et al. Tensile forces govern germ-layer organization in zebrafish. Nature Cell Biol. 10, 429–436 (2008). Shows a key role for actomyosin-dependent cell-cortex tension in the regulation of cell sorting in zebrafish embryos.

    Article  CAS  PubMed  Google Scholar 

  98. Irvine, K. D. & Wieschaus, E. Cell intercalation during Drosophila germband extension and its regulation by pair-rule segmentation genes. Development 120, 827–841 (1994).

    Article  CAS  PubMed  Google Scholar 

  99. Bertet, C., Sulak, L. & Lecuit, T. Myosin-dependent junction remodelling controls planar cell intercalation and axis elongation. Nature 429, 667–671 (2004). Suggests a model by which local forces at cell–cell boundaries cause junctional remodelling during intercalation of D. melanogaster embryos.

    Article  CAS  PubMed  Google Scholar 

  100. Hardin, J. & Walston, T. Models of morphogenesis: the mechanisms and mechanics of cell rearrangement. Curr. Opin. Genet. Dev. 14, 399–406 (2004).

    Article  CAS  PubMed  Google Scholar 

  101. Forgacs, G., Foty, R. A., Shafrir, Y. & Steinberg, M. S. Viscoelastic properties of living embryonic tissues: a quantitative study. Biophys. J. 74, 2227–2234 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Foty, R. A., Pfleger, C. M., Forgacs, G. & Steinberg, M. S. Surface tensions of embryonic tissues predict their mutual envelopment behavior. Development 122, 1611–1620 (1996).

    Article  CAS  PubMed  Google Scholar 

  103. Moore, S. W. A fiber optic system for measuring dynamic mechanical properties of embryonic tissues. IEEE Trans. Biomed. Eng. 41, 45–50 (1994).

    Article  CAS  PubMed  Google Scholar 

  104. Daniels, B. R., Masi, B. C. & Wirtz, D. Probing single-cell micromechanics in vivo: the microrheology of C. elegans developing embryos. Biophys. J. 90, 4712–4719 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Harris, A. K., Wild, P. & Stopak, D. Silicone rubber substrata: a new wrinkle in the study of cell locomotion. Science 208, 177–179 (1980).

    Article  CAS  PubMed  Google Scholar 

  106. Balaban, N. Q. et al. Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nature Cell Biol. 3, 466–472 (2001).

    Article  CAS  PubMed  Google Scholar 

  107. Munevar, S., Wang, Y. & Dembo, M. Traction force microscopy of migrating normal and H-ras transformed 3T3 fibroblasts. Biophys. J. 80, 1744–1757 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Choquet, D., Felsenfeld, D. P. & Sheetz, M. P. Extracellular matrix rigidity causes strengthening of integrin–cytoskeleton linkages. Cell 88, 39–48 (1997). Used laser tweezers to apply increased force to cells to show that cells strengthen their integrin–cytoskeletal linkages in response to increased matrix rigidity.

    Article  CAS  PubMed  Google Scholar 

  109. Jiang, G., Giannone, G., Critchley, D. R., Fukumoto, E. & Sheetz, M. P. Two-piconewton slip bond between fibronectin and the cytoskeleton depends on talin. Nature 424, 334–337 (2003).

    Article  CAS  PubMed  Google Scholar 

  110. Sniadecki, N. J. et al. Magnetic microposts as an approach to apply forces to living cells. Proc. Natl Acad. Sci. USA 104, 14553–14558 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Jaalouk, D. E. & Lammerding, J. Mechanotransduction gone awry. Nature Rev. Mol. Cell Biol. 23 Dec 2008 (doi:10.1038/nrm2597).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Martin, A. C., Kaschube, M. & Wieschaus, E. F. Pulsed contractions of an actin–myosin network drive apical constriction. Nature 23 Nov 2008 (doi:10.1038/nature07522).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Rauzi, M., Verant, P., Lecuit, T. & Lenne, P. -F. Nature and anisotropy of cortical forces orienting Drosophila tissue morphogenesis. Nature Cell Biol. 10, 1401–1410 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We apologize to authors whose papers could not be cited owing to space limitations. We thank R. Desai, J. Leight and L. Kwong for helpful comments. We acknowledge support from the National Institutes of Health (NIBIB, NHLBI and NIGMS) and the Army Research Office Multidisciplinary University Research Initiative. M.A.W. acknowledges financial support from the Ruth L. Kirschstein National Research Service Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher S. Chen.

Related links

Related links

FURTHER INFORMATION

Christopher S. Chen's homepage

Glossary

Morphogen

A diffusible signalling molecule that is usually found in a concentration gradient. Morphogens regulate tissue patterning during development.

Stiffness

The degree to which the surrounding adhesive scaffold resists deformation. Stiffness is also defined as the elastic modulus of a material.

Contractility

The ability of a cell to shorten or shrink in response to a stimulus. It is generated by the motor myosin II, which uses ATP hydrolysis to walk along actin filaments.

Convergence

Embryonic movements that mediolaterally narrow the tissue.

Mesoderm

One of the three germ layers that are produced by gastrulation. It gives rise to bone, muscle and connective tissue.

Notochord

A flexible rod of mesodermal cells that defines the axis of the embryo to provide support.

Involuting marginal zone

The vegetal portion of the marginal zone (a region between the animal and vegetal hemispheres) of the X. laevis embryo that turns inside the embryo during involution.

Mesenchymal stem cell

A multipotent stem cell that retains the ability to differentiate into multiple cell types.

Dorsal closure

The process during D. melanogaster embryogenesis whereby the two sides of epidermal tissue grow to close and cover the dorsal opening. During this time, the underlying amnioserosa is also stretched to separate the yolk sac from the vitelline envelope.

Egg chamber

A chamber in D. melanogaster that consists of a germline cyst that is covered by a somatic epithelium. During morphogenesis, the cyst grows in a proliferation-independent manner, whereas the epithelium grows by proliferation.

Blastocyst

A structure in early embryogenesis that contains the inner cell mass. The blastocyst gives rise to the embryo.

Poly(2-hydroxyethyl methacrylate)

(polyHEMA). A hydrophilic polymer that prevents cell attachment and spreading.

Microcontact printing

A method in which an elastomeric stamp with relief features is used to transfer 'inked' molecules (usually self-assembled monolayers or ECM proteins) onto the surface of a substrate through conformal contact.

Germband extension

The process by which the D. melanogaster embryo lengthens and narrows during gastrulation.

Apical constriction

Apically localized actomyosin-driven inward bending of tissue to promote invagination.

Formin

A protein that nucleates actin filaments to promote elongation.

Intercalation

The process by which cells rearrange and exchange neighbours to result in one plane of cells. This thins and expands the tissue during epiboly and convergence or extension.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wozniak, M., Chen, C. Mechanotransduction in development: a growing role for contractility. Nat Rev Mol Cell Biol 10, 34–43 (2009). https://doi.org/10.1038/nrm2592

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2592

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing