Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The protein import motor of mitochondria

Key Points

  • Transport of nuclear encoded preproteins into the mitochondria is mediated by the TOM and TIM translocases in the outer and inner mitochondrial membranes. Preproteins that are destined for the matrix carry a cleavable amino-terminal matrix targeting signal (MTS), and they are transported across TOM and TIM in a coordinated fashion and in an unfolded state. An electrical membrane potential, Δψ, is necessary for the translocation of the MTS; import of the rest of the preproteins is mediated by an ATP-driven import motor.

  • The import motor is hooked up to the outlet of the import channel of the TIM23 translocase. It consists of the peripheral inner membrane protein Tim44, the mitochondrial chaperone mtHsp70 and its co-chaperone Mge1.

  • Tim44 recruits mtHsp70s in the ATP-bound form to the import site. MtHsp70 binds a precursor that emerges from the import channel, hydrolyses ATP and is released from Tim44. The preprotein chain, in complex with mtHsp70, moves further inward. Retrograde movement is blocked by bound mtHsp70. Another mtHsp70 is binding and the precursor is fully imported by several cycles of mtHsp70 binding.

  • Two models for the mode of forward movement of preproteins have been proposed. The first — the targeted Brownian-ratchet model — involves random motion of a polypeptide chain in TOM and TIM23 channels, which is translated into vectorial movement. MtHsp70 represents an arresting component of a ratchet, which allows Brownian forward, but not backward, movement of the polypeptide chain.

  • The second model — the power-stroke model — involves a mechanical machine that pulls on the incoming polypeptide chain. A conformational change of mtHsp70 is transformed into movement that is perpendicular to the inner membrane. Tim44 serves as a fulcrum.

  • Experiments have been carried out to discriminate between the models. A preprotein with a stretch of 50 residues of glutamate residues present in a pore to which mtHsp70 cannot bind was imported into mitochondria. This indicates extensive spontaneous forward and reverse sliding in the import channels.

  • Local unfolding intermediates owing to thermal fluctuations (breathing) can be trapped by binding of denaturants, by chemical modification of amino-acid side chains or by interaction with chaperones. In this way, limited local unfolding reactions can be harvested and global unfolding can occur in the time frame of milliseconds to minutes.

  • Unfolded precursors are imported more rapidly than folded proteins. Translocation pauses when a folded domain is about to be translocated.

  • Unfolded preproteins are efficiently imported at high and low temperature. The import motor activity shows rather weak temperature dependence. By contrast, import of a preprotein that contains folded DHFR has strong temperature dependence. This indicates that the rate of spontaneous local unfolding is crucial.

  • The immunoglobulin (Ig)-like domains of muscle titin are readily imported into mitochondria although they are tightly folded. Forces of 200–300 pN are required to unfold these domains by mechanical pulling. Molecular motors like myosin or kinesin generate forces of 5 pN. It is unlikely that mtHsp70 could generate a force of 200 pN to unfold an Ig-like domain by a power stroke. Hydrolysis of a single ATP could generate a force of 14 pN, assuming a stroke length of 3.5 nm.

  • So, at present, experimental observations on the structure and function of the mitochondrial import motor can be explained in the framework of targeted Brownian-ratchet model. The existence of a power stroke mechanism cannot be excluded on principal grounds.

Abstract

Proteins that are destined for the matrix of mitochondria are transported into this organelle by two translocases: the TOM complex, which transports proteins across the outer mitochondrial membrane; and the TIM23 complex, which gets them through the inner mitochondrial membrane. Two models have been proposed to explain how this protein-import machinery works — a targeted Brownian ratchet, in which random motion is translated into vectorial motion, or a 'power stroke', which is exerted by a component of the import machinery. Here, we review the data for and against each model.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The mitochondrial protein-import machinery.
Figure 2: Two models for unfolding and translocation of preproteins across the mitochondrial membranes.
Figure 3: Unfolding without 'pulling'.
Figure 4: Local and global unfolding of a folded protein.
Figure 5: An untargeted molecular ratchet cannot efficiently promote unfolding.

Similar content being viewed by others

References

  1. Wickner, W. & Leonard, M. R. Escherichia coli preprotein translocase. J. Biol. Chem. 271, 29514–29516 (1996).

    CAS  PubMed  Google Scholar 

  2. Schatz, G. & Dobberstein, B. Common principles of protein translocation across membranes. Science 271, 1519–1526 (1996).

    CAS  PubMed  Google Scholar 

  3. Neupert, W. Protein import into mitochondria. Annu. Rev. Biochem. 66, 863–917 (1997).

    CAS  PubMed  Google Scholar 

  4. Matlack, K. E. S., Mothes, W. & Rapoport, T. A. Protein translocation: tunnel vision. Cell 92, 381–390 (1998).

    CAS  PubMed  Google Scholar 

  5. Keegstra, K. & Froehlich, J. E. Protein import into chloroplasts. Curr. Opin. Plant Biol. 2, 471–476 (1999).

    CAS  PubMed  Google Scholar 

  6. Johnson, A. E. & Haigh, N. G. The ER translocon and retrotranslocation: is the shift into reverse manual or automatic? Cell 102, 709–712 (2000).

    CAS  PubMed  Google Scholar 

  7. Rassow, J. & Pfanner, N. The protein import machinery of the mitochondrial membranes. Traffic 1, 457–464 (2000).

    CAS  PubMed  Google Scholar 

  8. Driessen, A. J., Manting, E. H. & van der Does, C. The structural basis of protein targeting and translocation in bacteria. Nature Struct. Biol. 8, 492–498 (2001).

    CAS  PubMed  Google Scholar 

  9. Holroyd, C. & Erdmann, R. Protein translocation machineries of peroxisomes. FEBS Lett. 501, 6–10 (2001).

    CAS  PubMed  Google Scholar 

  10. Robinson, C., Thompson, S. J. & Woolhead, C. Multiple pathways used for the targeting of thylakoid proteins in chloroplasts. Traffic 2, 245–251 (2001).

    CAS  PubMed  Google Scholar 

  11. Pfanner, N., Craig, E. A. & Hönlinger, A. Mitochondrial preprotein translocase. Annu. Rev. Cell Dev. Biol. 13, 25–51 (1997).

    CAS  PubMed  Google Scholar 

  12. Rapoport, T. A., Matlack, K. E. S., Plath, K., Misselwitz, B. & Staeck, O. Posttranslational protein translocation across the membrane of the endoplasmic reticulum. Biol. Chem. 380, 1143–1150 (1999).

    CAS  PubMed  Google Scholar 

  13. Bauer, M. F., Hofmann, S., Neupert, W. & Brunner, M. Protein translocation into mitochondria: the role of TIM complexes. Trends Cell Biol. 10, 25–31 (2000).

    CAS  PubMed  Google Scholar 

  14. Paschen, S. A. & Neupert, W. Protein import into mitochondria. IUBMB Life 52, 101–112 (2001).

    CAS  PubMed  Google Scholar 

  15. Pfanner, N. & Geissler, A. Versatility of the mitochondrial protein import machinery. Nature Rev. Mol. Cell Biol. 2, 339–349 (2001).

    CAS  Google Scholar 

  16. Berthold, J. et al. The MIM complex mediates preprotein translocation across the mitochondrial inner membrane and couples it to the mt-Hsp70/ATP driving system. Cell 81, 1085–1093 (1995).

    CAS  PubMed  Google Scholar 

  17. Moro, F., Sirrenberg, C., Schneider, H.-C., Neupert, W. & Brunner, M. The TIM17·23 preprotein translocase of mitochondria: composition and function in protein transport into the matrix. EMBO J. 18, 3667–3675 (1999).Tim44 is shown to be a dimer that recruits two molecules of mtHsp70 to the import site. A 'hand-over-hand' mode of protein import is proposed.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Milisav, I., Moro, F., Neupert, W. & Brunner, M. Modular structure of the TIM23 preprotein translocase of mitochondria. J. Biol. Chem. 276, 25856–25861 (2001).

    CAS  PubMed  Google Scholar 

  19. Sirrenberg, C., Bauer, M. F., Guiard, B., Neupert, W. & Brunner, M. Import of carrier proteins into the mitochondrial inner membrane mediated by Tim22. Nature 384, 582–585 (1996).

    CAS  PubMed  Google Scholar 

  20. Sirrenberg, C. et al. Carrier protein import into mitochondria mediated by the intermembrane proteins Tim10/Mrs11 and Tim12/Mrs5. Nature 391, 912–915 (1998).

    CAS  PubMed  Google Scholar 

  21. Kerscher, O., Holder, J., Srinivasan, M., Leung, R. S. & Jensen, R. E. The Tim54p–Tim22p complex mediates insertion of proteins into the mitochondrial inner membrane. J. Cell Biol. 139, 1663–1675 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Kerscher, O., Sepuri, N. B. & Jensen, R. E. Tim18p is a new component of the Tim54p–Tim22p translocon in the mitochondrial inner membrane. Mol. Biol. Cell 11, 103–116 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Koehler, C. M. et al. Import of mitochondrial carriers mediated by essential proteins of the intermembrane space. Science. 279, 369–373 (1998).

    CAS  PubMed  Google Scholar 

  24. Koehler, C. M. et al. Tim18p, a new subunit of the TIM22 complex that mediates insertion of imported proteins into the yeast mitochondrial inner membrane. Mol. Cell. Biol. 20, 1187–1193 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Paschen, S. A. et al. The role of the TIM8–13 complex in the import of Tim23 into mitochondria. EMBO J. 19, 6392–6400 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Kovermann, P. et al. Tim22, the essential core of the mitochondrial protein insertion complex, forms a voltage-activated and signal-gated channel. Mol. Cell. 9, 363–373 (2002).

    CAS  PubMed  Google Scholar 

  27. Bauer, M. F., Sirrenberg, C., Neupert, W. & Brunner, M. Role of Tim23 as voltage sensor and presequence receptor in protein import into mitochondria. Cell 87, 33–41 (1996).

    CAS  PubMed  Google Scholar 

  28. Mayer, A., Neupert, W. & Lill, R. Mitochondrial protein import: reversible binding of the presequence at the trans side of the outer membrane drives partial translocation and unfolding. Cell 80, 127–137 (1995).

    CAS  PubMed  Google Scholar 

  29. Hill, K. et al. Tom40 forms the hydrophilic channel of the mitochondrial import pore for preproteins. Nature 395, 516–521 (1998).

    CAS  PubMed  Google Scholar 

  30. Stan, T. et al. Recognition of preproteins by the isolated TOM complex of mitochondria. EMBO J. 19, 4895–4902 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Ahting, U. et al. Tom40, the pore-forming component of the protein-conducting TOM channel in the outer membrane of mitochondria. J. Cell Biol. 153, 1151–1160 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Model, K. et al. Protein translocase of the outer mitochondrial membrane: role of import receptors in the structural organization of the TOM complex. J. Mol. Biol. 316, 657–666 (2002).

    CAS  PubMed  Google Scholar 

  33. Kanamori, T., Nishikawa, S., Shin, I., Schultz, P. G. & Endo, T. Probing the environment along the protein import pathways in yeast mitochondria by site-specific photocrosslinking. Proc. Natl Acad. Sci. USA 94, 485–490 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Kanamori, T. et al. Uncoupling of transfer of the presequence and unfolding of the mature domain in precursor translocation across the mitochondrial outer membrane. Proc. Natl Acad. Sci. USA 96, 3634–3639 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Fölsch, H., Gaume, B., Brunner, M., Neupert, W. & Stuart, R. A. C- to N-terminal translocation of preproteins into mitochondria. EMBO J. 17, 6508–6515 (1998).

    PubMed  PubMed Central  Google Scholar 

  36. Donzeau, M. et al. Tim23 links the inner and outer mitochondrial membranes. Cell 101, 401–412 (2000).

    CAS  PubMed  Google Scholar 

  37. Truscott, K. N. et al. A presequence- and voltage-sensitive channel of the mitochondrial preprotein translocase formed by Tim23. Nature Struct. Biol. 8, 1074–1082 (2001).

    CAS  PubMed  Google Scholar 

  38. Rassow, J., Hartl, F.-U., Guiard, B., Pfanner, N. & Neupert, W. Polypeptides traverse the mitochondrial envelope in an extended state. FEBS Lett. 275, 190–194 (1990).

    CAS  PubMed  Google Scholar 

  39. Künkele, K. P. et al. The preprotein translocation channel of the outer membrane of mitochondria. Cell 93, 1009–1019 (1998).

    PubMed  Google Scholar 

  40. Schwartz, M. P., Huang, S. & Matouschek, A. The structure of precursor proteins during import into mitochondria. J. Biol. Chem. 274, 12759–12764 (1999).

    CAS  PubMed  Google Scholar 

  41. Schwartz, M. P. & Matouschek, A. The dimensions of the protein import channels in the outer and inner mitochondrial membranes. Proc. Natl Acad. Sci. USA 96, 13086–13090 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Martin, J., Malke, K. & Pfanner, N. Role of energized inner mitochondrial membrane in mitochondrial protein import: Δψ drives the movement of the presequence. J. Biol. Chem. 266, 18051–18057 (1991).

    CAS  PubMed  Google Scholar 

  43. Ungermann, C., Neupert, W. & Cyr, D. M. The role of Hsp70 in conferring unidirectionality on protein translocation into mitochondria. Science 266, 1250–1253 (1994).

    CAS  PubMed  Google Scholar 

  44. Ungermann, C., Guiard, B., Neupert, W. & Cyr, D. M. The Δψ- and Hsp70/MIM44-dependent reaction cycle driving early steps of protein import into mitochondria. EMBO J. 15, 735–744 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Herrmann, J. M. & Neupert, W. What fuels polypeptide translocation? An energetical view on mitochondrial protein sorting. Biochim. Biophys. Acta 1459, 331–338 (2000).

    CAS  PubMed  Google Scholar 

  46. Geissler, A., Rassow, J., Pfanner, N. & Voos, W. Mitochondrial import driving forces: enhanced trapping by matrix hsp70 stimulates translocation and reduces the membrane potential dependence of loosely folded preproteins. Mol. Cell. Biol. 21, 7097–7104 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Huang, S., Ratliff, K. S. & Matouschek, A. Protein unfolding by the mitochondrial membrane potential. Nature Struct. Biol. 9, 301–307 (2002).

    CAS  PubMed  Google Scholar 

  48. Maarse, A. C., Blom, J., Grivell, L. A. & Meijer, M. MPI1, an essential gene encoding a mitochondrial membrane protein, is possibly involved in protein import into yeast mitochondria. EMBO J. 11, 3619–3628 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Scherer, P. E., Manning-Krieg, U. C., Jeno, P., Schatz, G. & Horst, M. Identification of a 45-kDa protein at the protein import site of the yeast mitochondrial inner membrane. Proc. Natl Acad. Sci. USA 89, 11930–11934 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Schneider, H.-C. et al. Mitochondrial Hsp70/MIM44 complex facilitates protein import. Nature 371, 768–774 (1994).

    CAS  PubMed  Google Scholar 

  51. Craig, E. A. et al. SSC1, an essential member of the yeast HSP70 multigene family, encodes a mitochondrial protein. Mol. Cell. Biol. 9, 3000–3008 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Kang, P.-J. et al. Requirement for hsp70 in the mitochondrial matrix for translocation and folding of precursor proteins. Nature 348, 137–143 (1990).

    CAS  PubMed  Google Scholar 

  53. Rassow, J. et al. Mitochondrial protein import: biochemical and genetic evidence for interaction of matrix hsp70 and the inner membrane protein MIM44. J. Cell Biol. 127, 1547–1556 (1994).

    CAS  PubMed  Google Scholar 

  54. Kronidou, N. G. et al. Dynamic interaction between Isp45 and mitochondrial hsp70 in the protein import system of the yeast mitochondrial inner membrane. Proc. Natl Acad. Sci. USA 91, 12818–12822 (1994).References 50, 53 and 54 show that Tim44 recruits mtHsp70 in a nucleotide-specific manner to the import site. Tim44 is a receptor, but not a substrate, for mtHsp70.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Bömer, U. et al. Separation of structural and dynamic functions of the mitochondrial translocase: Tim44 is crucial for the inner membrane import sites in translocation of tightly folded domains, but not of loosely folded preproteins. EMBO J. 17, 4226–4237 (1998).

    PubMed  PubMed Central  Google Scholar 

  56. Schneider, H.-C., Westermann, B., Neupert, W. & Brunner, M. The nucleotide exchange factor MGE exerts a key function in the ATP-dependent cycle of mt-Hsp70–Tim44 interaction driving mitochondrial protein import. EMBO J. 15, 5796–5803 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Gragerov, A., Zeng, L., Zhao, X., Burkholder, W. & Gottesman, M. E. Specificity of DnaK–peptide binding. J. Mol. Biol. 235, 848–854 (1994).

    CAS  PubMed  Google Scholar 

  58. Bukau, B. & Horwich, A. L. The Hsp70 and Hsp60 chaperone machines. Cell 58, 351–366 (1998).

    Google Scholar 

  59. Rüdiger, S., Buchberger, A. & Bukau, B. Interaction of Hsp70 chaperones with substrates. Nature Struct. Biol. 92, 342–349 (1997).

    Google Scholar 

  60. Rüdiger, S., Germeroth, L., Schneider-Mergener, J. & Bukau, B. Substrate specificity of the DnaK chaperone determined by screening cellulose-bound peptide libraries. EMBO J. 16, 1501–1507 (1997).

    PubMed  PubMed Central  Google Scholar 

  61. Mayer, M. P., Rüdiger, S. & Bukau, B. Molecular basis for interactions of the DnaK chaperone with substrates. Biol. Chem. 381, 877–885 (2000).

    CAS  PubMed  Google Scholar 

  62. Mayer, M. P. et al. Multistep mechanism of substrate binding determines chaperone activity of Hsp70. Nature Struct. Biol. 7, 586–593 (2000).

    CAS  PubMed  Google Scholar 

  63. Laloraya, S., Gambill, B. D. & Craig, E. A. A role for a eukaryotic GrpE-related protein, Mge1p, in protein translocation. Proc. Natl Acad. Sci. USA 91, 6481–6485 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Laloraya, S., Dekker, P. J. T., Voos, W., Craig, E. A. & Pfanner, N. Mitochondrial GrpE modulates the function of matrix Hsp70 in translocation and maturation of preproteins. Mol. Cell. Biol. 15, 7098–7105 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Westermann, B., Prip-Buus, C., Neupert, W. & Schwarz, E. The role of the GrpE homologue, Mge1p, in mediating protein import and protein folding in mitochondria. EMBO J. 14, 3452–3460 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Dekker, P. J. T. & Pfanner, N. Role of mitochondrial GrpE and phosphate in the ATPase cycle of matrix Hsp70. J. Mol. Biol. 270, 321–327 (1997).

    CAS  PubMed  Google Scholar 

  67. Bolliger, L. et al. A mitochondrial homolog of bacterial GrpE interacts with mitochondrial hsp70 and is essential for viability. EMBO J. 13, 1998–2006 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Ikeda, E., Yoshida, S., Mitsuzawa, H., Uno, I. & Toh-e, A. YGE1 is a yeast homologue of Escherichia coli grpE and is required for maintenance of mitochondrial functions. FEBS Lett. 339, 265–268 (1994).

    CAS  PubMed  Google Scholar 

  69. Nakai, M., Kato, Y., Ikeda, E., Toh-e, A. & Endo, T. Yge1p, a eukaryotic Grp-E homolog, is localized in the mitochondrial matrix and interacts with mitochondrial Hsp70. Biochem. Biophys. Res. Commun. 200, 435–442 (1994).

    CAS  PubMed  Google Scholar 

  70. Neupert, W., Hartl, F. U., Craig E. A. & Pfanner, N. How do polypeptides cross the mitochondrial membranes? Cell 63, 447–450 (1990).

    CAS  PubMed  Google Scholar 

  71. Simon, S. M., Peskin, C. S. & Oster, G. F. What drives the translocation of proteins? Proc. Natl Acad. Sci. USA 89, 3770–3774 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Simon, S. M. & Blobel, G. Mechanisms of translocation of proteins across membranes. Subcell. Biochem. 21, 1–15 (1993).

    CAS  PubMed  Google Scholar 

  73. Glick, B. S., Wachter, C., Reid, G. A. & Schatz, G. Import of cytochrome b 2 into the mitochondrial intermembrane space: the tightly folded heme-binding domain makes import dependent on matrix ATP. Protein Sci. 2, 1901–1917 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Glick, B. S. Can Hsp70 proteins act as force-generating motors? Cell 80, 11–14 (1995).This describes the concept of mtHsp70 acting as part of an import motor by exerting a pulling force on preproteins.

    CAS  PubMed  Google Scholar 

  75. Moro, F., Okamoto, K., Donzeau, M., Neupert, W. & Brunner, M. Mitochondrial protein import: molecular basis of the ATP-dependent interaction of MtHsp70 with Tim44. J. Biol. Chem. 277, 6874–6880 (2002).

    CAS  PubMed  Google Scholar 

  76. Okamoto, K. et al. The protein import motor of mitochondria: a targeted molecular ratchet driving unfolding and translocation. EMBO J. 21, 3659–3671 (2002).This study provides several lines of evidence that mtHsp70 promotes unfolding of folded precursors by harvesting spontaneous local unfolding events. The import motor seems to act by a Brownian-ratchet mechanism. MtHsp70 drives unfolding of DHFR and titin domains, even if they are preceded by stretches of polyglutamate to which mtHsp70 cannot bind in order to pull.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Chauwin, J. F., Oster, G. & Glick, B. S. Strong precursor–pore interactions constrain models for mitochondrial protein import. Biophys J. 74, 1732–1743 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Pfanner, N. & Meijer, M. Pulling in the proteins. Curr. Biol. 5, 132–135 (1995).

    CAS  PubMed  Google Scholar 

  79. Jensen, R. E. & Johnson, A. E. Protein translocation: is Hsp70 pulling my chain? Curr. Biol. 9, R779–R782 (1999).

    CAS  PubMed  Google Scholar 

  80. Ryan, M. T. & Pfanner, N. Hsp70 proteins in protein translocation. Adv. Protein Chem. 59, 223–242 (2001).

    CAS  PubMed  Google Scholar 

  81. Pfanner, N. T. & Geissler, A. Versatility of the mitochondrial protein import machinery. Nature Rev. Mol. Cell Biol. 2, 339–349 (2001).

    CAS  Google Scholar 

  82. Martin, J. & Hartl, F. U. Chaperone-assisted protein folding. Curr. Opin. Struct. Biol. 7, 41–52 (1997).

    CAS  PubMed  Google Scholar 

  83. Hartl, F. U. Molecular chaperones in cellular folding. Nature 381, 571–579 (1996).

    CAS  PubMed  Google Scholar 

  84. Krimmer, T., Rassow, J., Kunau, W. H., Voos, W. & Pfanner, N. Mitochondrial protein import motor: the ATPase domain of matrix Hsp70 is crucial for binding to Tim44, while the peptide binding domain and the carboxy-terminal segment play a stimulatory role. Mol. Cell. Biol. 20, 5879–5887 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Dekker, P. J. et al. The Tim core complex defines the number of mitochondrial translocation contact sites and can hold arrested preproteins in the absence of matrix Hsp70–Tim44. EMBO J. 16, 5408–5419 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Spudich, J. A. How molecular motors work. Nature 372, 515–518 (1994).

    CAS  PubMed  Google Scholar 

  87. Spudich, J. A. The myosin swinging cross-bridge model. Nature Rev. Mol. Cell Biol. 2, 387–392 (2001).

    CAS  Google Scholar 

  88. Eilers, M. & Schatz, G. Binding of a specific ligand inhibits import of a purified precursor protein into mitochondria. Nature 322, 228–232 (1986).

    CAS  PubMed  Google Scholar 

  89. Rassow, J. et al. Translocation arrest by reversible folding of a precursor protein imported into mitochondria. A means to quantitate translocation contact sites. J. Cell Biol. 109, 1421–1428 (1989).

    CAS  PubMed  Google Scholar 

  90. Gaume, B. et al. Unfolding of preproteins upon import into mitochondria. EMBO J. 17, 6497–6507 (1998).This study provides evidence that the kinetic stability of the amino terminus of a folded protein — rather than its overall thermodynamic stability — determines the rates of unfolding and import.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Rojo, E. E., Guiard, B., Neupert, W. & Stuart, R. A. Sorting of D–lactate dehydrogenase to the inner membrane of mitochondria. Analysis of topogenic signal and energetic requirements. J. Biol. Chem. 273, 8040–8047 (1998).

    CAS  PubMed  Google Scholar 

  92. Gärtner, F. et al. Mitochondrial import of subunit Va of cytochrome c oxidase characterized with yeast mutants. J. Biol. Chem. 270, 3788–3796 (1995).

    PubMed  Google Scholar 

  93. Strub, A., Rottgers, K. & Voos, W. The Hsp70 peptide-binding domain determines the interaction of the ATPase domain with Tim44 in mitochondria. EMBO J. 21, 2626–2635 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Voisine, C. et al. The protein import motor of mitochondria: unfolding and trapping of preproteins are distinct and separable functions of matrix Hsp70. Cell 97, 565–574 (1999).This study shows that the interaction of mtHsp70 with Tim44 is essential for unfolding and import of preproteins. This observation has been used as an important argument in support of a pulling mechanism.

    CAS  PubMed  Google Scholar 

  95. Laufen, T. et al. Mechanism of regulation of hsp70 chaperones by DnaJ cochaperones. Proc. Natl Acad. Sci. USA 96, 5452–5457 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Merlin, A. et al. The J-related segment of Tim44 is essential for cell viability: a mutant Tim44 remains in the mitochondrial import site, but inefficiently recruits mtHsp70 and impairs protein translocation. J. Cell Biol. 145, 961–972 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Zhuang, X. et al. Fluorescence quenching: a tool for single-molecule protein-folding study. Proc. Natl Acad. Sci. USA 97, 14241–14244 (2000).This study shows that spontaneous local unfolding of tightly folded domains occurs in the millisecond range.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Huang, S., Ratliff, K. S., Schwartz, M. P., Spenner, J. M. & Matouschek, A. Mitochondria unfold precursor proteins by unravelling them from their N-termini. Nature Struct. Biol. 6, 1132–1138 (1999).This study provides evidence that the import machinery unfolds proteins from the amino terminus. The unfolding pathway on the surface of the mitochondria differs from unfolding in solution.

    CAS  PubMed  Google Scholar 

  99. Lim, J. H., Martin, F., Guiard, B., Pfanner, N. & Voos, W. The mitochondrial Hsp70-dependent import system actively unfolds preproteins and shortens the lag phase of translocation. EMBO J. 20, 941–950 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Vestweber, D. & Schatz, G. Point mutations destabilizing a precursor protein enhance its post-translational import into mitochondria. EMBO J. 7, 1147–1151 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Gambill, B. D. et al. A dual role for mitochondrial heat shock protein 70 in membrane translocation of preproteins. J. Cell Biol. 123, 109–117 (1993).

    CAS  PubMed  Google Scholar 

  102. Voos, W. et al. Differential requirement for the mitochondrial Hsp70–Tim44 complex in unfolding and translocation of preproteins. EMBO J. 15, 2668–2677 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Matouschek, A., Pfanner, N. & Voos, W. Protein unfolding by mitochondria. The Hsp70 import motor. EMBO Rep. 1, 404–410 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Matouschek, A. et al. Active unfolding of precursor proteins during mitochondrial protein import. EMBO J. 16, 6727–6736 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Carrion-Vazquez, M. et al. Mechanical and chemical unfolding of a single protein: a comparison. Proc. Natl Acad. Sci. USA 96, 3694–3699 (1999).This study used atomic-force microscopy measurements to show that the forces for mechanical unfolding of titin immunoglobulin-like domains are in the range of 200–280 pN.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Marszalek, P. E. et al. Mechanical unfolding intermediates in titin modules. Nature 402, 100–103 (1999).

    CAS  PubMed  Google Scholar 

  107. Li, H., Oberhauser, A. F., Fowler, S. B., Clarke, J. & Fernandez, J. M. Atomic force microscopy reveals the mechanical design of a modular protein. Proc. Natl Acad. Sci. USA 97, 6527–6531 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Smith, D. A. & Radford, S. E. Protein folding: pulling back the frontiers. Curr. Biol. 10, R662–R664 (2000).

    CAS  PubMed  Google Scholar 

  109. Horst, M., Azem, A., Schatz, G. & Glick, B. S. What is the driving force for protein import into mitochondria? Biochim. Biophys. Acta 1318, 71–78 (1997).A detailed and careful discussion of the possible mechanism of the mitochondrial import motor, with a clear description of the power-stroke model.

    CAS  PubMed  Google Scholar 

  110. Misselwitz, B., Staeck, O. & Rapoport, T. A. J proteins catalytically activate Hsp70 molecules to trap a wide range of peptide sequences. Mol. Cell 2, 593–603 (1998).

    CAS  PubMed  Google Scholar 

  111. Matlack, K. E. S., Misselwitz, B., Plath, K. & Rapoport, T. A. BiP acts as a molecular ratchet during posttranslational transport of prepro-α-factor across the ER membrane. Cell 97, 553–564 (1999).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Neupert.

Related links

Related links

DATABASES

Interpro

DHFR domain

Ig-like domains

LocusLink

BiP

<i>Saccharomyces</i> Genome Database

D-lactate dehydrogenase

Mge1

TIM8

TIM9

TIM10

TIM12

TIM13

Tim18

TIM22

TIM23

Tim44

Tim54

Tom5

Tom6

Tom7

Tom20

Tom22

Tom40

Tom70

Swiss-Prot

DHFR

DnaJ

DnaK

Mdj1

SecA

Sec63

Sec Y translocase

titin

Glossary

TAT TRANSLOCASE

The twin-arginine translocation (TAT) system in the plasma membranes of bacteria and thylakoid membranes of chloroplasts transports folded proteins across membranes. Their sorting signals typically contain the RR motif and a further hydrophobic residue two or three residues after this motif.

SOLUTE CARRIER FAMILY

A family of structurally related inner-membrane proteins of mitochondria with six transmembrane helices that facilitate transport of cofactors and metabolites such as ATP, ADP, phosphate, citrate, malate and aspartate.

CHAPERONE

A protein that interacts transiently with unfolded segments of polypeptide chains. Chaperones help to avoid misfolding or aggregation, and support folding and/or assembly of other proteins.

BROWNIAN RATCHET

A device that can bias the Brownian motion of a particle or macromolecule in an anisotropic medium, and thereby generate a force. In the case of a Brownian protein-translocation motor, the random motion of a polypeptide chain through a membrane is biased by a non-equilibrium chemical reaction, in which a component interacts with (traps) the polypeptide for a limited time period.

STOP-TRANSFER PATHWAY

Insertion of the precursor of a membrane protein by arrest of forward movement when a transmembrane segment reaches the translocase, followed by lateral release into the lipid bilayer.

DIHYDROFOLATE REDUCTASE

(DHFR). An enzyme that catalyses the reduction of different forms of hydrofolate. These reduction reactions are linked to the reduction/oxidation of NAD+/NADH.

PASSENGER PROTEIN

A protein which, when linked to a targeting or sorting signal, is taken to the respective intracellular location, as determined by the signal. Passenger proteins help to trace the movement of proteins into organelles. In addition, specific properties of such proteins, such as stability, cofactor binding, recognition by antibodies and intrinsic fluorescence can be exploited.

J-DOMAIN

A conserved domain in DnaJ and DnaJ-like proteins, which interacts with DnaK/Hsp70 chaperones.

UREA

A denaturant that is used to promote the unfolding of proteins. Urea serves as a means to trap or 'harvest' steps of spontaneous limited unfolding or thermal fluctuations.

N-ETHYL MALEIMIDE

A sulphydryl reagent that is widely used in biochemical studies to covalently modify cysteine residues in proteins.

CO-CHAPERONE

A protein that interacts and/or cooperates with a molecular chaperone and assists in its function.

METHOTREXATE

A folate antagonist that binds to the substrate-binding site of dihydrofolate reductase and stabilizes the folded domain.

SecYEG TRANSLOCASE

A protein complex in the plasma membrane of bacteria that mediates the secretion of proteins that carry signal sequences into the periplasmic space. This translocase consists of at least eight different proteins. Translocation is driven by conformational changes of the component SecA that lead to insertion of segments of the transported protein into the translocase and require ATP hydrolysis in the bacterial cytoplasm.

Sec61 TRANSLOCASE

A protein super-complex in the membrane of the endoplasmic reticulum (ER) that mediates the translocation of other proteins into the lumen of the ER and insertion into the ER membrane. It consists of more than ten different proteins, which recognize the signal sequence and the ribosome through the signal-recognition particle, form a pore in the membrane and drive translocation that is powered by ATP hydrolysis in the lumen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neupert, W., Brunner, M. The protein import motor of mitochondria. Nat Rev Mol Cell Biol 3, 555–565 (2002). https://doi.org/10.1038/nrm878

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm878

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing