Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Signalling

Listening in on bacteria: acyl-homoserine lactone signalling

Key Points

  • Bacteria can communicate with each other using diffusible chemical signals and can co-ordinate their behaviour to function as a group. Interbacterial signalling that functions to reflect population density is described as quorum sensing.

  • Among Gram-negative bacteria, acylated-homoserine lactones (acyl-HSLs) are common quorum-sensing signals that regulate a diverse range of target functions, which are often involved in host interactions.

  • Under certain circumstances, at least, quorum sensing has a role in the development of sessile microbial populations — called microbial biofilms — for several different bacteria, including the opportunistic human pathogens Pseudomonas aeruginosa and Burkholderia cepacia.

  • Acyl-HSLs are synthesized from common fatty-acid and amino-acid precursors, most commonly through proteins of the LuxI family of acyl-HSL synthases, although alternate biosynthetic routes have been identified in a few cases.

  • Increases in acyl-HSL concentration are generally perceived through the activity of LuxR-type transcription factors that bind the signals and are subsequently modified in their DNA-binding activity. Most LuxR proteins are transcriptional activators, although a few acyl-HSL-responsive repressors have also been identified.

  • The recently obtained three-dimensional structure of a LuxR-type protein reveals potential mechanisms for its interactions with both the relevant acyl-HSL and the DNA sequences upstream of regulated target genes.

  • Acyl-HSL quorum sensing might provide new targets for drug therapies.

  • Other well-studied mechanisms of bacterial quorum-sensing include oligopeptide signal molecules in Gram-positive bacteria and the potential interspecies signal, formerly known as autoinducer-2 (furanosyl boron diester), which is produced by a diverse range of microorganisms.

Abstract

Bacterial cell-to-cell signalling has emerged as a new area in microbiology. Individual bacterial cells communicate with each other and co-ordinate group activities. Although a lot of detail is known about the mechanisms of a few well-characterized bacterial communication systems, other systems have been discovered only recently. Bacterial intercellular communication has become a target for the development of new anti-virulence drugs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Vibrio fischeri lux-gene organization and symbiotic bioluminescence.
Figure 2: Model of acyl-homoserine-lactone (acyl-HSL) quorum sensing in a single generalized bacterial cell.
Figure 3: Structure and function of LuxI-type acyl-homoserine-lactone (acyl-HSL) synthases.
Figure 4: Structure and function of LuxR-type transcription factors.

Similar content being viewed by others

References

  1. Tomasz, A. Control of the competent state in Pneumococcus by a hormone-like cell product: an example of a new type of regulatory mechanism in bacteria. Nature 208, 155–159 (1965).

    CAS  PubMed  Google Scholar 

  2. Nealson, K. H., Platt, T. & Hastings, J. W. Cellular control of the synthesis and activity of the bacterial luminescent system. J. Bacteriol. 104, 313–322 (1970).The discovery of autoinducer activity in Vibrio fischeri.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Fuqua, W. C., Winans, S. C. & Greenberg, E. P. Quorum sensing in bacteria: the LuxR–LuxI family of cell density-responsive transcriptional regulators. J. Bacteriol. 176, 269–275 (1994).The introduction of the term 'quorum sensing' to describe population-density-responsive gene regulation by LuxR–LuxI regulatory systems.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Winans, S. C. & Bassler, B. L. Mob psychology. J. Bacteriol. 184, 873–883 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Eberhard, A. et al. Structural identification of autoinducer of Photobacterium fischeri luciferase. Biochemistry 20, 2444–2449 (1981).Chemical characterization of the Vibrio fischeri acyl-HSL, then called autoinducer.

    CAS  PubMed  Google Scholar 

  6. Engebrecht, J., Nealson, K. H. & Silverman, M. Bacterial bioluminescence: isolation and genetic analysis of the functions from Vibrio fischeri. Cell 32, 773–781 (1983).Molecular cloning of Vibrio fischeri lux genes and demonstration of regulation in Escherichia coli.

    CAS  PubMed  Google Scholar 

  7. Bainton, N. J. et al. A general role for the lux autoinducer in bacterial cell signalling: control of antibiotic biosynthesis in Erwinia. Gene 116, 87–91 (1992).

    CAS  PubMed  Google Scholar 

  8. Gray, K. M. & Garey, J. R. The evolution of bacterial LuxI and LuxR quorum sensing regulators. Microbiology 147, 2379–2387 (2001).

    CAS  PubMed  Google Scholar 

  9. Gray, K. M. et al. Cell-to-cell signalling in the symbiotic nitrogen-fixing bacterium Rhizobium leguminosarum: autoinduction of a stationary phase and rhizosphere-expressed genes. J. Bacteriol. 178, 372–376 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Puskas, A., Greenberg, E. P., Kaplan, S. & Schaefer, A. L. A quorum-sensing system in the free-living photosynthetic bacterium Rhodobacter sphaeroides. J. Bacteriol. 179, 7530–7537 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Lithgow, J. K. et al. The regulatory locus cinRI in Rhizobium leguminosarum controls a network of quorum-sensing loci. Mol. Microbiol. 37, 81–97 (2000).

    CAS  PubMed  Google Scholar 

  12. Kaplan, H. B. & Greenberg, E. P. Diffusion of autoinducer is involved in regulation of the Vibrio fischeri luminescence system. J. Bacteriol. 163, 1210–1214 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Engebrecht, J. & Silverman, M. Identification of genes and gene products necessary for bacterial bioluminescence. Proc. Natl Acad. Sci. USA 81, 4154–4158 (1984).

    CAS  PubMed  Google Scholar 

  14. Devine, J. H., Shadel, G. S. & Baldwin, T. O. Identification of the operator of the lux regulon from the Vibrio fischeri strain ATCC7744. Proc. Natl Acad. Sci. USA 86, 5688–5692 (1989).

    CAS  PubMed  Google Scholar 

  15. Egland, K. A. & Greenberg, E. P. Quorum sensing in Vibrio fischeri: elements of the luxI promoter. Mol. Microbiol. 31, 1197–1204 (1999).

    CAS  PubMed  Google Scholar 

  16. Boettcher, K. J. & Ruby, E. G. Detection and quantification of Vibrio fischeri autoinducer from the symbiotic squid light organs. J. Bacteriol. 177, 1053–1058 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Lee, K.-H. & Ruby, E. G. The detection of the squid light organ symbiont Vibrio fischeri in Hawaiian seawater by using lux gene probes. Appl. Environ. Microbiol. 58, 942–947 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Nealson, K. H. & Hastings, J. W. Bacterial bioluminescence: its control and ecological significance. Microbiol. Rev. 43, 496–518 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Gilson, L., Kuo, A. & Dunlap, P. V. AinS and a new family of autoinducer synthesis proteins. J. Bacteriol. 177, 6946–6951 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Hanzelka, B. L. et al. Acylhomoserine lactone synthase activity of the Vibrio fischeri AinS protein. J. Bacteriol. 181, 5766–5770 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Kuo, A., Blough, N. V. & Dunlap, P. V. Multiple N-acyl-l-homoserine lactone autoinducers of luminescence genes in the marine symbiotic bacterium Vibrio fischeri. J. Bacteriol. 176, 7558–7565 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Fuqua, C., Parsek, M. & Greenberg, E. P. Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing. Annu. Rev. Genet. 35, 439–468 (2001).

    CAS  PubMed  Google Scholar 

  23. Whiteley, M., Lee, K. M. & Greenberg, E. P. Identification of genes controlled by quorum sensing in Pseudomonas aeruginosa. Proc. Natl Acad. Sci. USA 96, 13904–13909 (1999).Mutational screen for quorum-sensing-controlled ( qsc ) genes in Pseudomonas aeruginosa and delineation of the roles of the Las and Rhl systems.

    CAS  PubMed  Google Scholar 

  24. Gambello, M. J. & Iglewski, B. H. Cloning and characterization of the Pseudomonas aeruginosa lasR gene, a transcriptional activator of elastase expression. J. Bacteriol. 173, 3000–3009 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Davies, D. G. et al. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280, 295–298 (1998).Evidence that the Pseudomonas aeruginosa Las system influences the structural development of surface-adherent biofilms.

    CAS  PubMed  Google Scholar 

  26. Passador, L. et al. Expression of Pseudomonas aeruginosa virulence genes requires cell-to-cell communication. Science 260, 1127–1130 (1993).

    CAS  PubMed  Google Scholar 

  27. Latifi, A. et al. Multiple homologues of LuxR and LuxI control expression of virulence determinants and secondary metabolites through quorum sensing in Pseudomonas aeruginosa PAO1. Mol. Microbiol. 17, 333–343 (1995).

    CAS  PubMed  Google Scholar 

  28. Pearson, J. P. et al. Structure of the autoinducer required for expression of Pseudomonas aeruginosa virulence genes. Proc. Natl Acad. Sci. USA 91, 197–201 (1994).

    CAS  PubMed  Google Scholar 

  29. Pearson, J. P., Passador, L., Iglewski, B. H. & Greenberg, E. P. A second N-acylhomoserine lactone signal produced by Pseudomonas aeruginosa. Proc. Natl Acad. Sci. USA 92, 1490–1494 (1995).

    CAS  PubMed  Google Scholar 

  30. Winson, M. K. et al. Multiple N-acyl-l-homoserine lactone signal molecules regulate production of virulence determinants and secondary metabolites in Pseudomonas aeruginosa. Proc. Natl Acad. Sci. USA 92, 9427–9431 (1995).

    CAS  PubMed  Google Scholar 

  31. Brint, J. M. & Ohman, D. E. Synthesis of multiple exoproducts in Pseudomonas aeruginosa is under the control of RhlR–RhlI, another set of regulators in strain PAO1 with homology to the autoinducer-responsive LuxR–LuxI family. J. Bacteriol. 177, 7155–7163 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Chapon-Hervé, V. et al. Regulation of the xcp secretion pathway by multiple quorum-sensing modulons in Pseudomonas aeriginosa. Mol. Microbiol. 24, 1169–1178 (1997).

    PubMed  Google Scholar 

  33. Ochsner, U. A., Koch, A. K. & Reiser, J. Isolation and characterization of a regulatory gene affecting rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. J. Bacteriol. 176, 2044–2054 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Latifi, A. et al. A hierarchical quorum-sensing cascade in Pseudomonas aeruginosa links the transcriptional activators LasR and RhlR (VsmR) to expression of the stationary-phase σ factor RpoS. Mol. Microbiol. 21, 1137–1146 (1996).

    CAS  PubMed  Google Scholar 

  35. Ochsner, U. A. & Reiser, J. Autoinducer-mediated regulation of rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. Proc. Natl Acad. Sci. USA 92, 6424–6428 (1995).

    CAS  PubMed  Google Scholar 

  36. Pearson, J. P., Pesci, E. C. & Iglewski, B. H. Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in the control of elastase and rhamnolipid biosynthesis genes. J. Bacteriol. 179, 5756–5767 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Whiteley, M. & Greenberg, E. P. Promoter specificity elements in Pseudomonas aeruginosa quorum-sensing-controlled genes. J. Bacteriol. 183, 5529–5534 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Rumbaugh, K. P., Griswold, J. A., Iglewski, B. H. & Hamood, A. N. Contribution of quorum sensing to the virulence of Pseudomonas aeruginosa in burn wound infections. Infect. Immun. 67, 5854–5862 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Pearson, J. P., Feldman, M., Iglewski, B. H. & Prince, A. Pseudomonas aeruginosa cell-to-cell signaling is required for virulence in a model of acute pulmonary infection. Infect. Immun. 68, 4331–4334 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Moré, M. I. et al. Enzymatic synthesis of a quorum-sensing autoinducer through use of defined substrates. Science 272, 1655–1658 (1996).First in vitro evidence that an I-type protein, TraI from Agrobacterium tumefaciens , is an acyl-HSL synthase that uses SAM and fatty-acyl biosynthetic precursors.

    Google Scholar 

  41. Schaefer, A. L. et al. Generation of cell-to-cell signals in quorum sensing: acyl homoserine lactone synthase activity of a purified Vibrio fischeri LuxI protein. Proc. Natl Acad. Sci. USA 93, 9505–9509 (1996).Reports that purified LuxI can use SAM and C6-ACP as substrates for acyl-HSL synthesis.

    CAS  PubMed  Google Scholar 

  42. Watson, W. T. et al. Structural basis and specificity of acyl-homoserine lactone signal production in bacterial quorum sensing. Mol. Cell 9, 1–20 (2002).First structural information on an acyl-HSL synthase — in this case, EsaI from Pantoea stewartii . Demonstrates similarity to N -acetyltransferases.

    Google Scholar 

  43. Bassler, B. L., Wright, M. & Silverman, M. R. Multiple signalling systems controlling expression of luminescence in Vibrio harveyi: sequence and function of genes encoding a second sensory pathway. Mol. Microbiol. 13, 273–286 (1994).

    CAS  PubMed  Google Scholar 

  44. Milton, D. L. et al. The LuxM homologue VanM from Vibrio anguillarum directs the synthesis of N-(3-hydroxyhexanoyl)homoserine lactone and N-hexanoylhomoserine lactone. J. Bacteriol. 183, 3537–3547 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Laue, B. E. et al. The biocontrol strain Pseudomonas fluorescens F113 produces the Rhizobium small bacteriocin, N-(3-hydroxy-7-cis-tetradecanoyl)homoserine lactone, via HdtS, a putative novel N-acylhomoserine lactone synthase. Microbiology 146, 2469–2480 (2000).

    CAS  PubMed  Google Scholar 

  46. Parsek, M. R. et al. Acyl homoserine-lactone quorum-sensing signal generation. Proc. Natl Acad. Sci. USA 96, 4360–4365 (1999).

    CAS  PubMed  Google Scholar 

  47. Matthews, R. W. in Escherichia coli and Salmonella: Cellular and Molecular Biology (ed. Niedhardt, F. C.) 600–611 (ASM, Washington, DC, 1996).

    Google Scholar 

  48. Fuqua, C. & Eberhard, A. in Cell–Cell Signaling in Bacteria (eds Dunny, G. M. & Winans, S. C.) 211–230 (ASM, Washington, DC, 1999).

    Google Scholar 

  49. Hanzelka, B. L. et al. Mutational analysis of the Vibrio fischeri LuxI polypeptide: critical regions of an autoinducer synthase. J. Bacteriol. 179, 4882–4887 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Parsek, M. R., Schaefer, A. L. & Greenberg, E. P. Analysis of random and site-directed mutations in rhlI, a Pseudomonas aeruginosa gene encoding an acylhomoserine lactone synthase. Mol. Microbiol. 26, 301–310 (1997).

    CAS  PubMed  Google Scholar 

  51. Evans, K. et al. Influence of the MexAB–OprM multidrug efflux system on quorum sensing in Pseudomonas aeruginosa. J. Bacteriol. 180, 5443–5447 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Pearson, J. P., Van Delden, C. & Iglewski, B. H. Active efflux and diffusion are involved in transport of Pseudomonas aeruginosa cell-to-cell signals. J. Bacteriol. 181, 1203–1210 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Welch, M. et al. N-acyl homoserine lactone binding to the CarR receptor determines quorum-sensing specificity in Erwinia. EMBO J. 19, 631–641 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Hanzelka, B. L. & Greenberg, E. P. Evidence that the N-terminal region of the Vibrio fischeri LuxR protein constitutes an autoinducer-binding domain. J. Bacteriol. 177, 815–817 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Stevens, A. M. & Greenberg, E. P. in Cell–Cell Signaling in Bacteria (eds Dunny, G. M. & Winans, S. C.) 231–242 (ASM, Washington, DC, 1999).

    Google Scholar 

  56. Henikoff, S., Wallace, J. C. & Brown, J. P. Finding protein similarities with nucleotide sequence databases. Methods Enzymol. 183, 111–132 (1990).

    CAS  PubMed  Google Scholar 

  57. Da Re, S. et al. Intramolecular signal transduction within the FixJ transcriptional activator: in vitro evidence for the inhibitory effect of the phosphorylatable regulatory domain. Nucleic Acids Res. 9, 1555–1561 (1994).

    Google Scholar 

  58. Zhu, J. & Winans, S. C. The quorum-sensing transcriptional regulator TraR requires its cognate signaling ligand for protein folding, protease resistance, and dimerization. Proc. Natl Acad. Sci. USA 98, 1507–1512 (2001).Proposes that TraR from Agrobacterium tumefaciens functions as a receptor only when it is present in its nascent, unfolded form.

    CAS  PubMed  Google Scholar 

  59. Fuqua, W. C. & Winans, S. C. A LuxR–LuxI type regulatory system activates Agrobacterium Ti plasmid conjugal transfer in the presence of a plant tumor metabolite. J. Bacteriol. 176, 2796–2806 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Luo, Z.-Q. & Farrand, S. K. Signal-dependent DNA binding and functional domains of the quorum-sensing activator TraR as identified by repressor activity. Proc. Natl Acad. Sci. USA 96, 9009–9014 (1999).

    CAS  PubMed  Google Scholar 

  61. Stevens, A. M. & Greenberg, E. P. Quorum sensing in Vibrio fischeri: essential elements for activation of the luciferase genes. J. Bacteriol. 179, 557–562 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhu, J. & Winans, S. C. Autoinducer binding by the quorum-sensing regulator TraR increases affinity for target promoters in vitro and decreases TraR turnover rates in whole cells. Proc. Natl Acad. Sci. USA 96, 4832–4837 (1999).

    CAS  PubMed  Google Scholar 

  63. Zhang, R. G. et al. Structure of a bacterial quorum-sensing transcription factor complexed with autoinducer-type pheromone and DNA. Nature 417, 971–974 (2002). Reports structural information for TraR of Agrobacterium tumefaciens complexed with its acyl-HSL and its DNA binding site. First structural information for any LuxR homologue.

    CAS  PubMed  Google Scholar 

  64. Egland, K. A. & Greenberg, E. P. Quorum sensing in Vibrio fischeri: analysis of the LuxR DNA binding region by alanine-scanning mutagenesis. J. Bacteriol. 183, 382–386 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Choi, S. H. & Greenberg, E. P. The C-terminal region of the Vibrio fischeri LuxR protein contains an inducer-independent lux gene activating domain. Proc. Natl Acad. Sci. USA 88, 11115–11119 (1991).

    CAS  PubMed  Google Scholar 

  66. Anderson, R. M., Zimprich, C. A. & Rust, L. A second operator is involved in Pseudomonas aeruginosa elastase (lasB) activation. J. Bacteriol. 181, 6264–6270 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Gray, K. M., Passador, L., Iglewski, B. H. & Greenberg, E. P. Interchangeability and specificity of components from the quorum-sensing regulatory systems of Vibrio fischeri and Pseudomonas aeruginosa. J. Bacteriol. 176, 3076–3080 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Saier, M. H. J., Ramseier, T. M. & Reizer, J. in Escherichia coli and Salmonella: Cellular and Molecular Biology (ed. Neidhardt, F. C.) 1325–1343 (ASM, Washington, DC, 1996).

    Google Scholar 

  69. Rhodius, V. A. & Busby, S. J. W. Positive activation of gene expression. Curr. Opin. Microbiol. 1, 152–159 (1998).

    CAS  PubMed  Google Scholar 

  70. Finney, A. H. et al. Role of the C-terminal domain of the alpha subunit of RNA polymerase in LuxR-dependent transcriptional activation of the lux operon during quorum sensing. J. Bacteriol. 184, 4520–4528 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Egland, K. A. & Greenberg, E. P. Conversion of the Vibrio fischeri transcriptional activator, LuxR, to a repressor. J. Bacteriol. 182, 805–811 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Andersson, R. A. et al. Quorum-sensing in the plant pathogen Erwinia carotovora subsp. carotovora: the role of expREcc . Mol. Plant–Microbe Interact. 13, 384–393 (2000).

    CAS  PubMed  Google Scholar 

  73. von Bodman, S. B., Majerczak, D. R. & Coplin, D. L. A negative regulator mediates quorum-sensing control of exopolysaccharide production in Pantoea stewartii subsp. stewartii. Proc. Natl Acad. Sci. USA 95, 7687–7692 (1998).

    CAS  PubMed  Google Scholar 

  74. Minogue, T. D., Trebra, M. W., Bernhard, F. & Bodman, S. B. The autoregulatory role of EsaR, a quorum sensing regulator in Pantoea stewartii ssp. stewartii: evidence for a repressor function. Mol. Microbiol. 44, 1625–1635 (2002).

    CAS  PubMed  Google Scholar 

  75. Chugani, S. A. et al. QscR, a modulator of quorum-sensing signal synthesis and virulence in Pseudomonas aeruginosa. Proc. Natl Acad. Sci. USA 98, 2752–2757 (2001).

    CAS  PubMed  Google Scholar 

  76. Oger, P. et al. Octopine-type Ti plasmids code for a mannopine-inducible dominant-negative allele of traR, the quorum-sensing activator that regulates Ti plasmid conjugal transfer. Mol. Microbiol. 27, 277–288 (1998).

    CAS  PubMed  Google Scholar 

  77. Swiderska, A. et al. Inhibition of the Agrobacterium tumefaciens TraR quorum-sensing regulator: interactions with the TraM anti-activator. J. Biol. Chem. 276, 49449–49458 (2001).

    CAS  PubMed  Google Scholar 

  78. Zhu, J. & Winans, S. C. Activity of the quorum-sensing regulator TraR of Agrobacterium tumefaciens is inhibited by a truncated, dominant defective TraR-like protein. Mol. Microbiol. 27, 289–297 (1998).

    CAS  PubMed  Google Scholar 

  79. Givskov, M. et al. Eukaryotic interference with homoserine lactone-mediated prokaryotic signalling. J. Bacteriol. 178, 6618–6622 (1996).Isolation of halogenated furanones — quorum-sensing inhibitors from the red alga Delisea pulchra.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Hentzer, M. et al. Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound. Microbiology 148, 87–102 (2002).

    CAS  PubMed  Google Scholar 

  81. Manefield, M. et al. Evidence that halogenated furanones from Delisea pulchra inhibit acylated homoserine lactone (AHL)-mediated gene expression by displacing the AHL signal from its receptor protein. Microbiology 145, 283–291 (1999).

    CAS  PubMed  Google Scholar 

  82. Teplitski, M., Robinson, J. B. & Bauer, W. D. Plants secrete substances that mimic bacterial N-acyl homoserine lactone signal activities and affect population density-dependent behaviors in associated bacteria. Mol. Plant–Microbe Interact. 13, 637–648 (2000).

    CAS  PubMed  Google Scholar 

  83. Dong, Y.-H., Xu, J.-L., Li, X.-Z. & Zhang, L.-H. AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates virulence of Erwinia carotovora. Proc. Natl Acad. Sci. USA 97, 3526–3531 (2000).

    CAS  PubMed  Google Scholar 

  84. Leadbetter, J. R. & Greenberg, E. P. Metabolism of acyl-homoserine lactone quorum-sensing signals by Variovorax paradoxus. J. Bacteriol. 182, 6921–6926 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Dong, Y. H. et al. Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase. Nature 411, 813–817 (2001).Reports the production of a transgenic plant that produces the Bacillus AiiA lactonase, which breaks down acyl-HSLs. This plant is resistant to a pathogen that uses an acyl-HSL to regulate its virulence.

    CAS  PubMed  Google Scholar 

  86. Pirhonen, M., Flego, D., Heikinheimo, R. & Palva, E. T. A small diffusible molecule is responsible for the global control of virulence and exoenzyme production in the plant pathogen Erwinia carotovora. EMBO J. 12, 2467–2476 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Costerton, J. W. et al. Microbial biofilms. Annu. Rev. Microbiol. 49, 711–745 (1995).

    CAS  PubMed  Google Scholar 

  88. Singh, P. K. et al. Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature 407, 762–764 (2000).

    CAS  PubMed  Google Scholar 

  89. Davey, M. E. & O'Toole, G. A. Microbial biofilms: from ecology to molecular genetics. Microbiol. Mol. Biol. Rev. 64, 847–867 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. O'Toole, G. A. & Kolter, R. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol. Microbiol. 30, 295–304 (1998).

    CAS  Google Scholar 

  91. Heydorn, A. et al. Statistical analysis of Pseudomonas aeruginosa biofilm development: impact of mutations in genes involved in twitching motility, cell-to-cell signaling, and stationary-phase σ factor expression. Appl. Environ. Microbiol. 68, 2008–2017 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Huber, B. et al. The cep quorum-sensing system of Burkholderia cepacia H111 controls biofilm formation and swarming motility. Microbiology 147, 2517–2528 (2001).Provides evidence that quorum-sensing affects the biofilm development of Burkholderia cepacia — only the second microbe for which this has been demonstrated.

    CAS  PubMed  Google Scholar 

  93. Lynch, M. J. et al. The regulation of biofilm development by quorum sensing in Aeromonas hydrophila. Environ. Microbiol. 4, 18–28 (2002).

    CAS  PubMed  Google Scholar 

  94. Horinouchi, S. in Cell–Cell Signaling in Bacteria (eds Dunny, G. M. & Winans, S. C.) 193–207 (ASM, Washington, DC, 1999).

    Google Scholar 

  95. Dunny, G. M. & Leonard, B. A. Cell–cell communication in Gram-positive bacteria. Annu. Rev. Microbiol. 51, 527–564 (1997).

    CAS  PubMed  Google Scholar 

  96. Lazazzera, B. A., Plamer, T., Quisel, J. & Grossman, A. D. in Cell–Cell Signaling in Bacteria (eds Dunny, G. M. & Winans, S. C.) 27–46 (ASM, Washington, DC, 1999).

    Google Scholar 

  97. Morrison, D. A. & Lee, M. S. Regulation of competence for genetic transformation in Streptococcus pneumoniae: a link between quorum sensing and DNA processing genes. Res. Microbiol. 151, 445–451 (2000).

    CAS  PubMed  Google Scholar 

  98. Nakayama, J. et al. Gelatinase biosynthesis-activating pheromone: a peptide lactone that mediates a quorum sensing in Enterococcus faecalis. Mol. Microbiol. 41, 145–154 (2001).

    CAS  PubMed  Google Scholar 

  99. Novick, R. P. in Cell–Cell Signaling in Bacteria (eds Dunny, G. M. & Winans, S. C.) 129–146 (ASM, Washington, DC, 1999).

    Google Scholar 

  100. Chang, C. & Stewart, R. C. The two-component system. Plant Physiol. 117, 723–731 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Ji, G., Beavis, R. C. & Novick, R. P. Cell density control of staphylococcal virulence mediated by an octapeptide pheromone. Proc. Natl Acad. Sci. USA 92, 12055–12059 (1995).

    CAS  PubMed  Google Scholar 

  102. Ji, G., Beavis, R. & Novick, R. P. Bacterial interference caused by autoinducing peptide variants. Science 276, 2027–2030 (1997).

    CAS  PubMed  Google Scholar 

  103. Nealson, K. H. Autoinduction of bacterial luciferase: occurrence, mechanism, and significance. Arch. Microbiol. 112, 73–79 (1977).

    CAS  PubMed  Google Scholar 

  104. Greenberg, E. P., Hastings, J. W. & Ulitzur, S. Induction of luciferase synthesis in Beneckea harveyi by other marine bacteria. Arch. Microbiol. 120, 87–91 (1979).

    CAS  Google Scholar 

  105. Cao, J.-G. & Meighen, E. A. Purification and structural identification of an autoinducer for the luminescence system of V. harveyi. J. Biol. Chem. 264, 21670–21676 (1989).

    CAS  PubMed  Google Scholar 

  106. Bassler, B. L., Greenberg, E. P. & Stevens, A. M. Cross-species induction of luminescence in the quorum-sensing bacterium Vibrio harveyi. J. Bacteriol. 179, 4043–4045 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Surette, M. G. & Bassler, B. L. Quorum sensing in Escherichia coli and Salmonella typhimurium. Proc. Natl Acad. Sci. USA 95, 7046–7050 (1998).

    CAS  PubMed  Google Scholar 

  108. Winans, S. C. Bacterial esperanto. Nature Struct. Biol. 9, 83–84 (2002).

    CAS  PubMed  Google Scholar 

  109. Surette, M. G., Miller, M. B. & Bassler, B. L. Quorum sensing in Escherichia coli, Salmonella typhimurium, and Vibrio harveyi: a new family of genes responsible for autoinducer production. Proc. Natl Acad. Sci. USA 96, 1639–1644 (1999).

    CAS  PubMed  Google Scholar 

  110. Schauder, S., Shokat, K., Surette, M. G. & Bassler, B. L. The LuxS family of bacterial autoinducers: biosynthesis of a novel quorum-sensing signal molecule. Mol. Microbiol. 41, 463–476 (2001).

    CAS  PubMed  Google Scholar 

  111. Winzer, K. et al. LuxS: its role in central metabolism and the in vitro synthesis of 4-hydroxy-5-methyl-3(2H)-furanone. Microbiology 148, 909–922 (2002).

    CAS  PubMed  Google Scholar 

  112. Chen, X. et al. Structural identification of a bacterial quorum-sensing signal containing boron. Nature 415, 545–549 (2002).Crystal structure of the AI-2 quorum-sensing signal in complex with its receptor.

    CAS  Google Scholar 

  113. Greenberg, E. P. in Microbial signalling and communication (eds England, R., Hobbs, G., Bainton, N. & Roberts, D. McL.) 71–84 (Cambridge Univ. Press, Cambridge, UK, 1999).

    Google Scholar 

  114. Dunny, G. M. & Winans, S. C. (eds) Cell–Cell Signaling in Bacteria (ASM, Washington, DC, 1999).

    Google Scholar 

  115. Vannini, A. et al. The crystal structure of the quorum sensing protein TraR bound to its autoinducer and target DNA. EMBO J. 21, 4393–4401 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank our many colleagues, who make the area of cell-to-cell bacterial communication so exciting. Specifically, we gratefully acknowledge S. von Bodman, M. Churchill, A. Stevens and S. Winans for sharing their unpublished results, and D. Bartels, Aurora Biosciences, for help in drafting the Box 3 figure. C.F. receives support from the National Science Foundation and the United States Department of Agriculture. E.P.G. acknowledges the generous support of the National Institutes of Health, the National Science Foundation, the Cystic Fibrosis Foundation, Procter & Gamble and the W. M. Keck Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Peter Greenberg.

Related links

Related links

DATABASES

SwissProt

agrA

agrB

AgrC

agrD

ainR

ainS

CarR

EsaI

HdtS

hla

lacZ

LasI

LasR

luxA

luxB

luxC

luxD

luxE

LuxI

LuxR

luxS

RhlI

RhlR

TraR

VanM

Glossary

GENETIC COMPETENCE

The ability to take up naked DNA from the external environment through the process of transformation.

PROTEOBACTERIA

A large, physiologically diverse phylogenetic group of Gram-negative bacteria, also known as the purple bacteria.

TWO-COMPONENT SYSTEMS

A common bacterial signal-transduction system that is composed of at least two components — a sensor kinase (which alters its rate of autophosphorylation in response to specific environmental conditions) and a response regulator (to which the phosphate group is transferred, and which transduces the regulatory signal to cellular processes such as gene expression).

EXOENZYME

An enzyme that is secreted to the external environment across the bacterial envelope.

BIOFILMS

Surface-adherent microbial populations, usually embedded within a self-produced matrix material.

ACYL CARRIER PROTEIN

Conserved protein required for fatty-acid biosynthesis. Fatty-acid intermediates are covalently associated with acyl carrier protein through the phosphopantethiene prosthetic group.

BACTERIAL ENVELOPE

The cell wall and cytoplasmic membrane of a bacterial cell.

−35 REGION

Consensus sequence region of standard prokaryotic promoters 35 base pairs upstream of the transcriptional start site.

σ SUBUNIT

Subunit of the prokaryotic RNA polymerase holoenzyme that recognizes and binds to the promoter sequence and dissociates after transcription begins.

−10 REGION

Consensus sequence region of standard prokaryotic promoters 10 base pairs upstream of the transcriptional start site.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fuqua, C., Greenberg, E. Listening in on bacteria: acyl-homoserine lactone signalling. Nat Rev Mol Cell Biol 3, 685–695 (2002). https://doi.org/10.1038/nrm907

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm907

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing