Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

How do bacterial cells ensure that metalloproteins get the correct metal?

An Erratum to this article was published on 31 December 2008

Key Points

  • More than 25% of proteins are thought to need metals, such as zinc, iron, copper, cobalt, nickel, manganese, magnesium and calcium. Proteins tend to bind metals such as copper and zinc tightly, but bind metals such as manganese, magnesium and calcium weakly, and for essential divalent cations the order of affinity is defined by the Irving–Williams stability series. Some non-essential metals, such as cadmium and mercury, can also be highly competitive.

  • The cell must supply sufficient atoms of each metal to satisfy the demands of proteins that require the element and must also act to keep the tight-binding metals out of the binding sites of proteins that require weaker-binding metals. Mechanisms by which cells meet this challenge to correctly populate metalloproteins have been proposed, although to date few studies have explicitly set out to test them.

  • By restricting the numbers of metal atoms within the cytoplasm, it is presumed that rather than metals competing with other metals for a limited pool of protein, each protein competes with other proteins for a limited pool of metal. Under these conditions, metal occupancy is determined by the relative metal affinities of the different proteins rather than their absolute affinities. However, this requires precise control over the numbers of atoms of each metal and molecules of the respective metalloproteins.

  • A balance between the actions of importers and exporters for each metal controls how many atoms accumulate in the cell. The catalogue of metal transporters includes ATP-binding cassette-type ATPases, P1-type ATPases, RND (resistance and nodulation), CDF (cation diffusion facilitator) and NiCoT (Ni and Co transporter) proteins, CorA (Co resistance), NRAMP (natural resistance associated with macrophage protein) and ZIP (Zrt/Irt-like protein)-family transporters.

  • The number of protein binding sites for each metal can be adjusted to match metal supply; for example, by switching from a protein that requires iron to one that uses copper when it becomes available or iron becomes limiting. The synthesis of storage proteins, such as metallothioneins for zinc or ferritins for ferric iron, sequesters surplus metal atoms to restrain them from other binding sites.

  • Expression of genes that encode metal transporters and storage proteins is generally controlled by metal sensors, including two-component histidine kinases and response regulators plus seven known families of soluble DNA-binding, metal-binding transcriptional regulators (Fur, DtxR, NikR, MerR, ArsR–SmtB, CsoR–RcnR and CopY). The metal affinities of these proteins can determine the boundaries between metal sufficiency and metal excess or deficiency for each element. These affinities become increasingly tight on moving up the Irving–Williams series, such that the metals at the top of the series must be bound and buffered to extremely low concentrations.

  • Some metals are passed to the correct metalloproteins by dedicated delivery pathways that involve metallochaperones, in which case the specificity of a protein–protein interaction can ensure that only the correct proteins acquire the metal.

  • Metal discrimination by the proteins of metal homeostasis is especially important if these proteins influence metal occupancy of other metalloproteins. Analysis of nickel specificity by the DNA-binding repressor NmtR from Mycobacterium tuberculosis revealed that the discernment of metals by metal sensors can be determined by the sensors' allosteric mechanism and/or its access to metal, which is predicted to be a function of the relative metal affinities of the cells complement of metal sensors.

Abstract

Protein metal-coordination sites are richly varied and exquisitely attuned to their inorganic partners, yet many metalloproteins still select the wrong metals when presented with mixtures of elements. Cells have evolved elaborate mechanisms to scavenge for sufficient metal atoms to meet their needs and to adjust their needs to match supply. Metal sensors, transporters and stores have often been discovered as metal-resistance determinants, but it is emerging that they perform a broader role in microbial physiology: they allow cells to overcome inadequate protein metal affinities to populate large numbers of metalloproteins with the right metals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Localization-dependent ligand binding and trapping through folding.
Figure 2: The complement of metal transporters in Escherichia coli.
Figure 3: The complement of metal sensors in Escherichia coli.
Figure 4: Pathways of metal supply.

Similar content being viewed by others

References

  1. Dupont, C. L., Yang, S., Palenik, B. & Bourne, P. E. Modern proteomes contain putative imprints of ancient shifts in trace metal geochemistry. Proc. Natl Acad. Sci. USA 103, 17822–17827 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Andreini, C., Bertini, I. & Rosata, A. A hint to search for metalloproteins in gene banks. Bioinformatics 20, 1373–1380 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Bertini, I. & Cavallaro, G. Metals in the omics world: copper homeostasis and cytochrome c oxidase assembly in a new light. J. Biol. Inorg. Chem. 13, 3–14 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Ferrer, M., Golyshina, O. V., Beloqui, A., Golyshin, P. N. & Timmis, K. N. The cellular machinery of Ferroplasma acidophilum is iron-protein dominated. Nature 445, 91–94 (2007). An experimental estimate of the scale of a cell's metallome.

    Article  CAS  PubMed  Google Scholar 

  5. Irving, H. & Williams, R. J. P. Order of stability of metal complexes. Nature 162, 746–747 (1948). The first version of the Irving–Williams series.

    Article  CAS  Google Scholar 

  6. Fraústo da Silva, J. J. R. & Williams, R. J. P. The Biological Chemistry of the Elements (Oxford Univ. Press, 2001). An inspired overview of the chemical principals that govern the elemental requirements of life.

    Google Scholar 

  7. Guedon et al. The global transcriptional response of Bacillus subtilis to manganese involves the MntR, Fur, TnrA and σB regulons. Mol. Microbiol. 49, 1477–1491 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Lee, L. J., Barrett, J. A. & Poole, R. K. Genome wide transcriptional response of chemostat-cultured Escherichia coli to zinc. J. Bacteriol. 187, 1124–1134 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Magnani, D., Barré, O., Gerber, S. D. & Solioz, M. Characterisation of the CopR regulon of Lactococcus lactis IL1403. J. Bacteriol. 190, 536–545 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Robinson, N. J. A more discerning zinc exporter. Nature Chem. Biol. 3, 692–693 (2007).

    Article  CAS  Google Scholar 

  11. Tottey, S. et al. Protein folding location can regulate manganese versus copper- or zinc-binding. Nature 455, 1138–1142 (2008). Predictions of the Irving–Williams series were tested, the significance of tight buffering of copper and zinc in the cytoplasm was revealed and a mechanism of metal selection based on Tat versus Sec export was discovered.

    Article  CAS  PubMed  Google Scholar 

  12. Nies, D. H. How cells control zinc homeostasis. Science 317, 1695–1696 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Nikaido, H. & Vaara, M. Molecular basis of bacterial outer membrane permeability. Microbiol. Rev. 49, 1–32 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Braun, V. & Endriss, F. Energy-coupled outer membrane transport proteins and regulatory proteins. Biometals 20, 219–230 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Ferguson, A. D. & Deisenhofer, J. Metal import through microbial membranes. Cell 116, 15–24 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Solioz, M., Odermatt, A. & Krapf, R. Copper pumping ATPases: common concepts in bacteria and man. FEBS Lett. 346, 44–47 (1994).

    Article  CAS  PubMed  Google Scholar 

  17. Saier, M. H. Jr, Tam, R., Reizer, A. & Reizer, J. Two novel families of bacterial membrane proteins concerned with nodulation, cell division and transport. Mol. Microbiol. 11, 841–847 (1994).

    Article  CAS  PubMed  Google Scholar 

  18. Anton, A., Groβe, C., Reiβman, J., Probyl, T. & Nies, D. H. CzcD is a heavy metal ion transporter involved in regulation of heavy metal resistance in Ralstonia sp. strain CH34. J. Bacteriol. 181, 6876–6881 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Saier, M. H. J. A functional–phylogenetic classification system for transmembrane solute transporters. Microbiol. Mol. Biol. Rev. 64, 354–411 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rodionov, D. A., Hebbeln, P., Gelfand, M. S. & Eitinger, T. Comparative and functional genomic analysis of prokaryotic nickel and cobalt uptake transporters: evidence for a novel group of ATP-binding cassette transporters. J. Bacteriol. 188, 317–327 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Maguire, M. E. The structure of CorA: a Mg2+-selective channel. Curr. Opin. Struct. Biol. 16, 432–438 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Papp-Wallace, K. M. & Maguire, M. E. Manganese transport and the role of manganese in virulence. Annu. Rev. Microbiol. 60, 187–209 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Hantke, K. Bacterial zinc uptake and regulators. Curr. Opin. Microbiol. 8, 196–202 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Nucifora, G., Chu, L., Misra, T. K. & Silver, S. Cadmium resistance from Staphylococcus aureus plasmid pI258 cadA gene results from a cadmium-efflux ATPase. Proc. Natl Acad. Sci. USA 86, 3544–3548 (1989). The first description of a metal-transporting P 1 -type ATPase as a bacterial resistance determinant for a non-essential metal.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Banci, L. et al. Solution structure of the N-terminal domain of a potential copper-translocating P-type ATPase from Bacillus subtilis in the apo and Cu(I) loaded states. J. Mol. Biol. 317, 415–429 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Harrison, M. D., Jones, C. E., Solioz, M. & Dameron, C. T. Intracellular copper routing: the role of copper chaperones. Trends Biochem. Sci. 25, 29–32 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. González-Guerro, M. & Argüello, J. M. Mechanisms of Cu+-transporting ATPases: soluble Cu+ chaperones directly transfer Cu+ to transmembrane transport sites. Proc. Natl Acad. Sci. USA 105, 5992–5997 (2008).

    Article  Google Scholar 

  28. Lu, M. & Fu, D. Structure of the zinc transporter YiiP. Science 317, 1746–1748 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Nies, D. H. Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol. Rev. 27, 313–339 (2003). An extensive description of bacterial metal-transport proteins.

    Article  CAS  PubMed  Google Scholar 

  30. Giedroc, D. P. & Arunkumar, A. I. Metal sensor proteins: nature's metalloregulated allosteric switches. Dalton Trans. 29, 3107–3120 (2007). A review of metal-sensor proteins that emphasizes the importance of coordination chemistry.

    Article  CAS  Google Scholar 

  31. Lee, J.-W. & Helmann, J. D. Functional specialization within the Fur family of metalloregulators. Biometals 20, 485–499 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Brown, N. L., Stoyanov, J. V., Kidd, S. P. & Hobman, J. L. The MerR family of transcriptional regulators. FEMS Microbiol. Rev. 27, 145–163 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Schmitt, M. P., Twiddy, E. M. & Holmes, R. K. Purification and characterization of the diphtheria toxin repressor. Proc. Natl Acad. Sci. USA 89, 7576–7580 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Iwig, J. S., Rowe, J. L. & Chiver, P. T. Nickel homeostasis in Escherichia coli — the rcnR–rcnA efflux pathway and its linkage to NikR function. Mol. Microbiol. 62, 252–262 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Liu, T. et al. CsoR is a novel Mycobacterium tuberculosis copper-sensing transcriptional regulator. Nature Chem. Biol. 3, 60–68 (2007). An exemplary study in which a new DNA-binding metal sensor was described, from discovery to the determination of its structure and the details of its metal-sensing sites.

    Article  CAS  Google Scholar 

  36. Ogawa, T. et al. A two-component signal transduction pathway regulates manganese homeostasis in Synechocystis PCC 6803, a photosynthetic organism. J. Biol. Chem. 277, 28981–28986 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Anderson, L. A. et al. Characterisation of the molybdenum-responsive ModE regulatory protein and its binding to the promoter region of the modABCD (molybdenum transport) operon of Escherichia coli. Eur. J. Biochem. 246, 119–126 (1997).

    Article  CAS  PubMed  Google Scholar 

  38. McNicholas, P. M., Rech, S. A. & Gunsalus, R. P. Characterisation of the ModE DNA-binding sites in the control regions of modABCD and moaABCD of Escherichia coli. Mol. Microbiol. 23, 515–524 (1997).

    Article  CAS  PubMed  Google Scholar 

  39. Gaballa, A., Wang, T., Ye, R. W. & Helmann, J. D. Functional analysis of the Bacillus subtilis Zur regulon. J. Bacteriol. 184, 6508–6514 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Panina, E. M., Mironov, A. A. & Gelfand, M. S. Comparative genomics of bacterial zinc regulons: enhanced iron transport, pathogenesis, and rearrangement of ribosomal proteins. Proc. Natl Acad. Sci. USA 100, 9912–9917 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Maciag, A. et al. Global analysis of the Mycobacterium tuberculosis Zur (FurB) regulon. J. Bacteriol. 189, 730–740 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Campbell, D.R. et al. Mycobacterial cells have dual nickel–cobalt sensors: sequence relationships and metal sites of metal-responsive repressors are not congruent. J. Biol. Chem. 282, 32298–32310 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Delany, I., Rappuoli, R. & Scarlato, V. Fur functions as an activator and as a repressor of putative virulence genes in Neisseria meningitides. Mol. Microbiol. 52, 1018–1090 (2004).

    Article  CAS  Google Scholar 

  44. Masse, E. & Gottesman, S. A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli. Proc. Natl Acad. Sci. USA 99, 4620–4625 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dann, C. E. et al. Structure and mechanism of a metal-sensing regulatory RNA. Cell 130, 878–892 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Helmann, J. D. Measuring metals with RNA. Mol. Cell 27, 859–860 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Golynskiy, M. V., Gunderson, W. A., Hendrich, M. P. & Cohen, S. M. Metal-binding studies and EPR spectroscopy of the manganese transport regulator MntR. Biochemistry 45, 15359–15372 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Outten, C. E. & O'Halloran, T. V. Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis. Science 292, 2488–2492 (2001). The sensors Zur and ZntR respond to zinc at concentrations that are so low that they imply that all cellular zinc is tightly bound and buffered.

    Article  CAS  PubMed  Google Scholar 

  49. Changella, A. et al. Molecular basis of metal-ion selectivity and zeptomolar sensitivity by CueR. Science 301, 1383–1397 (2003). CueR responds to copper at concentrations that are so low that they imply that all cellular copper is tightly bound and buffered.

    Article  CAS  Google Scholar 

  50. Andrews, S. C., Robinson, A. K. & Rodríguez- Quiñones, F. Bacterial iron homeostasis. FEMS Microbiol. Rev. 27, 215–237 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Huckle, J. W., Morby, A. P., Turner, J. S. & Robinson, N. J. Isolation of a prokaryotic metallothionein locus and analysis of transcriptional control by trace metals. Mol. Microbiol. 7, 177–187 (1993).

    Article  CAS  PubMed  Google Scholar 

  52. Blindauer, C. A. et al. Multiple bacteria encode metallothioneins and SmtA-like zinc fingers. Mol. Microbiol. 45, 1421–1432 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Morby, A. P., Turner, J. S., Huckle, J. W. & Robinson, N. J. SmtB is a metal-dependent repressor of the cyanobacterial metallothionein gene smtA: identification of a Zn inhibited DNA–protein complex. Nucleic Acids Res. 21, 921–925 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gold, B. et al. Identification of a copper-binding metallothionein in pathogenic mycobacteria. Nature Chem. Biol. 4, 609–616 (2008).

    Article  CAS  Google Scholar 

  55. McHugh, J. P. et al. Global iron-dependent gene regulation in Escherichia coli. A new mechanism for iron homeostasis. J. Biol. Chem. 278, 29478–29486 (2003). Transcription profiling uncovers a low-iron metabolism that is switched on when iron is limited.

    Article  CAS  PubMed  Google Scholar 

  56. Nielsen, A. K., Gerdes, K. & Murrell, J. C. Copper-dependent reciprocal regulation of methane monoxygenase genes in Methylococcus capsulatus and Methylosinus trichosporium. Mol. Microbiol. 25, 399–409 (1997).

    Article  CAS  PubMed  Google Scholar 

  57. Lieberman, R. L. & Rosenzweig, A. C. Crystal structure of a membrane-bound metalloenzyme that catalyses the biological oxidation of methane. Nature 434, 177–182 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Merchant, S. in Metal Ions in Gene Regulation (eds Silver, S. & Walden, W.) 450–467 (Chapman & Hall, New York, 1998).

    Book  Google Scholar 

  59. Rowe, J. L., Starnes, L. & Chivers, P. T. Complex transcriptional control links NikABCDE-dependent nickel transport with hydrogenase expression in Escherichia coli. J. Bacteriol. 187, 6317–6323 (2005). The nickel supply for hydrogenase was shown to be independent of the nickel supply for the nickel sensor.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Woodward, J., Orr, M., Cordray, K. & Greenbaum, E. Enzymatic production of biohydrogen. Nature 405, 1014–1015 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Leech, M. R. & Zamble, D. B. Metallocentre assembly of the hydrogenase enzymes. Curr. Opin. Chem. Biol. 11, 159–165 (2007).

    Article  CAS  Google Scholar 

  62. Leech, M. R., Zhang, J. W. & Zamble, D. B. The role of complex formation between the Escherichia coli hydrogenase accessory factors HypB and SlyD. J. Biol. Chem. 282, 16177–16186 (2007).

    Article  CAS  Google Scholar 

  63. Maier, R. J., Benoit, S. L. & Seshadri, S. Nickel-binding and accessory proteins facilitating Ni-enzyme maturation in Helicobacter pylori. Biometals 20, 655–664 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lee, M. H. et al. Purification and characterization of Klebsiella aerogenes UreE protein: a nickel-binding protein that functions in urease metallocentrer assembly. Protein Sci. 2, 1042–1052 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Cuirli, S. et al. Molecular characterization of Bacillus pasteurrii UreE, a metal-binding chaperone for the assembly of the urease active site. J. Biol. Inorg. Chem. 7, 623–631 (2002).

    Article  CAS  Google Scholar 

  66. Fontecave, M. Iron–sulfur clusters: ever-expanding roles. Nature Chem. Biol. 2, 171–174 (2006).

    Article  CAS  Google Scholar 

  67. Fontecave, M. & Ollagnier- de-Choudens, S. Iron–sulphur cluster biosynthesis in bacteria: mechanisms of cluster assembly and transfer. Arch. Biochem. Biophys. 472, 226–237 (2008).

    Article  CAS  Google Scholar 

  68. Ranquet, C., Ollangnier- de-Choudens, S., Loiseau, L., Barras, F. & Fontecave, M. Cobalt stress in Escherichia coli. The effect on the iron–sulfur proteins. J. Biol. Chem. 282, 30442–30451 (2007). Iron–sulphur cluster assembly was shown to be susceptible to iron replacement by cobalt but the clusters were protected once inside the holoprotein.

    Article  CAS  PubMed  Google Scholar 

  69. Odermatt, A. & Solioz, M. Two trans-acting metalloregulatory proteins controlling expression of the copper-ATPases of Enterococcus hirae. J. Biol. Chem. 270, 4349–4354 (1995). Reported the discovery of a bacterial copper metallochaperone.

    Article  CAS  PubMed  Google Scholar 

  70. Cobine, P. et al. The Enterococcus hirae copper chaperone CopZ delivers copper(I) to the CopY repressor. FEBS Lett. 445, 27–30 (1999).

    Article  CAS  PubMed  Google Scholar 

  71. Brorsson, A. C. et al. The “two state folder” MerP forms partially unfolded structures that show temperature dependent hydrogen exchange. J. Mol. Biol. 340, 333–344 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Radford, D. S. et al. CopZ from Bacillus subtilis interacts in vivo with a copper exporting CPx-type ATPase CopA. FEMS Microbiol. Lett. 220, 105–112 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Tottey, S. et al. A copper metallochaperone for photosynthesis and respiration reveals metal-specific targets, interaction with an importer, and alternative sites for copper acquisition. J. Biol. Chem. 177, 5490–5497 (2002).

    Article  CAS  Google Scholar 

  74. Banci, L., Bertini, I., Ciofi-Baffoni, S., Del Conte, R. & Gonnelli, L. Understanding copper trafficking in bacteria: interactions between the copper transport protein CopZ and the N-terminal domain of the copper ATPase CopA from Bacillus subtilis. Biochemistry 42, 1939–1949 (2003). High-field NMR was used to visualize the transient complexes that form between copper metallochaperones and their partners.

    Article  CAS  PubMed  Google Scholar 

  75. Banci, L. et al. The delivery of copper for thylakoid import observed by NMR. Proc. Natl Acad. Sci. USA 103, 8320–8325 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Claus, H. & Decker, H. Bacterial tyrosinases. Syst. Appl. Microbiol. 29, 3–14 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Cavet, J. S. et al. A nickel–cobalt sensing ArsR–SmtB family repressor. Contributions of cytosol and effector binding sites to metal selectivity. J. Biol. Chem. 277, 38441–38448 (2002). Identified the importance of access and allostery to the metal specificity of metal sensors.

    Article  CAS  PubMed  Google Scholar 

  78. Turner, J. S., Glands, P. D., Samson, A. C. & Robinson, N. J. Zn2+-sensing by the cyanobacterial metallothionein repressor SmtB: different motifs mediate metal-induced protein–DNA dissociation. Nucleic Acids Res. 24, 3714–3721 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Pennella, M. A., Shokes, J. E., Cosper, N. J., Scott, R. A. & Giedroc, D. P. Structural elements of metal selectivity in metal sensor proteins. Proc. Natl Acad. Sci. USA 100, 3713–3718 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Golynskiy, M. V., Gunderson, W. A., Hendrich, M. P. & Cohen, S. M. Metal binding studies and EPR spectroscopy of the manganese transport regulator MntR. Biochemistry 45, 15359–15372 (2006). Confirmed the importance of access and allostery to the metal selectivity of MntR.

    Article  CAS  PubMed  Google Scholar 

  81. Mills, S. A. & Marletta, M. A. Metal binding characteristics and role of iron oxidation in the ferric uptake repressor from Escherichia coli. Biochemistry 44, 13553–13559 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Phillips, C. M. et al. Structural basis of the metal specificity for nickel regulatory protein NikR. Biochemistry 47, 1938–1946 (2008). Confirmed the importance of access and allostery to the metal selectivity of NikR.

    Article  CAS  PubMed  Google Scholar 

  83. Liu, T., Reyes-Caballero, H., Li, C., Scott, R. A. & Giedroc, D. P. Multiple metal binding domains enhance the Zn(II) selectivity of the divalent metal, ion transporter AztA. Biochemistry 46, 11057–11068 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Dutta, S. J., Liu, J., Stemmler, A. J. & Mitra, B. Conservative and nonconservative mutations of the transmembrane CPC motif in ZntA: effect on metal selectivity and activity. Biochemistry 46, 3692–3703 (2007).

    Article  CAS  PubMed  Google Scholar 

  85. Borrelly, G. P., Rondet, A. A., Tottey, S. & Robinson, N. J. Chimeras of P-type ATPases and their transcriptional regulators: contributions of a cytosolic amino-terminal domain to metal specificity. Mol. Microbiol. 53, 217–227 (2004).

    Article  CAS  PubMed  Google Scholar 

  86. Guedon, E. & Helmann, J. D. Origins of metal ion selectivity in the DtxR/MntR family of metalloregulators. Mol. Microbiol. 48, 495–506 (2003). DtxR responded aberrantly to manganese when tested in a heterologous bacterium as it could gain access to the metal.

    Article  CAS  PubMed  Google Scholar 

  87. Corbin, B. D. et al. Metal chelation and inhibition of bacterial growth in tissue abscesses. Science 319, 962–965 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. Tottey, S., Harvie, D. R. & Robinson, N. J. Understanding how cells allocate metals using metal sensors and metallochaperones. Acc. Chem. Res. 38, 775–783 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. O'Halloran, T. V. & Finney, L. A. Transition metal speciation in the cell: insights from the chemistry of metal ion receptors. Science 300, 931–936 (2003).

    Article  CAS  PubMed  Google Scholar 

  90. Kuper, J., Llamas, A., Hecht, H. J., Mendel, R. R. & Schwarz, G. Structure of the molybdopterin-bound Cna1G domain links molybdenum and copper metabolism. Nature 430, 803–806 (2004).

    Article  CAS  PubMed  Google Scholar 

  91. Ansari, A. Z., Chael, M. L. & O'Halloran, T. V. Allosteric underwinding of DNA is a critical step in positive control of transcription by Hg-MerR. Nature 355, 87–89 (1993).

    Article  Google Scholar 

  92. Xu, Y., Feng, L., Jeffrey, P. D., Shi, Y. & Morel, F. M. Structure and metal exchange in the cadmium carbonic anhydrase of marine diatoms. Nature 452, 56–61 (2008).

    Article  CAS  PubMed  Google Scholar 

  93. Gupta, A., Matsui, K., Lo, J. F. & Silver, S. Molecular basis for resistance to silver cations in Salmonella. Nature Med. 5, 183–188 (1999).

    Article  CAS  PubMed  Google Scholar 

  94. Qin, J. et al. Convergent evolution of a new arsenic binding site in the ArsR/SmtB family of metalloregulators. J. Biol. Chem. 282, 34346–34355 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Magyar, J. S. & Godwin, H. A. Spectropotentiometric analysis of metal binding to structural zinc-binding sites: accounting quantitatively for pH and metal ion buffering effects. Anal. Biochem. 320, 39–54 (2003).

    Article  CAS  PubMed  Google Scholar 

  96. Wernimont, A. K., Yatsunyk, L. A. & Rosenzweig, A. C. Binding of copper(I) by the Wilson disease protein and its copper chaperone. J. Biol. Chem. 279, 12269–12276 (2004).

    Article  CAS  PubMed  Google Scholar 

  97. Xiao, Z., Loughlin, F., George, G. N., Howlettt, G. J. & Wedd, A. G. C-terminal domain of the membrane copper transporter Ctr1 from Saccharomyces cerevisiae binds four Cu(I) atoms as a cuprous-thiolate polynuclear cluster: sub-femtomolar Cu(I) affinity of three proteins involved in copper trafficking. J. Am. Chem. Soc. 126, 3081–3090 (2004).

    Article  CAS  PubMed  Google Scholar 

  98. Burns, C. S. et al. Copper coordination in the full-length, recombinant prion protein. Biochemistry, 42, 6794–6803 (2003).

    Article  CAS  PubMed  Google Scholar 

  99. Klewpatinoud, M., Davis, P., Bowen, S., Brown, D. R. & Viles, J. H. Deconvoluting the Cu2+ binding modes of full-length prion protein. J. Biol. Chem. 283, 1870–1881 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors have been supported by Biotechnology and Biological Sciences Research Council (BBSRC) Plant and Microbial Sciences (PMS) grant BB/E001688/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nigel J. Robinson.

Related links

Related links

DDATABASES

Entrez Genome Project

Bacillus subtilis

Corynebacterium diphtheriae

Escherichia coli

Helicobacter pylori

Mycobacterium tuberculosis

Staphylococcus aureus

Synechocystis sp. PCC 6803

FURTHER INFORMATION

Nigel J. Robinson's homepage

Glossary

Lewis acid

A chemical that can accept a pair of electrons from a Lewis base.

Thiophilic

A strong binder to thiol sulphurs.

Porin

A β-barrel protein that allows the diffusion of molecules (up to 1.5 kDa) across the outer membrane.

Antiport

Coupled transport of two molecules in opposing directions.

Metallothionein

A small, cysteine-rich metal-binding protein.

Apoprotein

A protein without a metal cofactor.

Holoprotein

A mature protein with a metal cofactor.

Winged helix–turn–helix structure

A structure found in many DNA-binding proteins with wings formed by a pair of β-strands.

d–d transition

An electronic transition between d-orbitals in a metal atom.

Tetrahedral geometry

Four atoms are arranged around a central atom, thereby defining the vertices of a tetrahedron.

Octahedral geometry

Six atoms are symmetrically arranged around a central atom, thereby defining the vertices of an octahedron.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waldron, K., Robinson, N. How do bacterial cells ensure that metalloproteins get the correct metal?. Nat Rev Microbiol 7, 25–35 (2009). https://doi.org/10.1038/nrmicro2057

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2057

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing