Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Microbial degradation of aromatic compounds — from one strategy to four

Key Points

  • Aromatic compounds are common growth substrates for microorganisms and are also prominent environmental pollutants. The crucial step in their degradation is to overcome the huge resonance energy that stabilizes the aromatic ring. The microbial degradation of aromatic compounds includes a great variety of mechanisms and chemical reactions, some of which have only rare counterparts in organic chemistry.

  • The classical strategy for aromatic-ring cleavage, which is restricted to aerobic organisms, comprises an attack by oxygenases that hydroxylate and finally cleave the ring with the help of activated molecular oxygen (O2). However, three additional strategies exist that are based on completely different ring activation mechanisms and use CoA thioesters and ring cleavage by hydrolysis.

  • The first strategy depends on the presence of O2 and uses monooxygenases of the class I di-iron protein family. These enzymes are epoxidases that form non-aromatic ring-epoxides of benzoyl-CoA and phenylacetyl-CoA, compounds that are further metabolized by ring hydrolysis.

  • The other two strategies are O2 independent, involve the reduction of the aromatic ring and, under anoxic conditions, convert most aromatic substrates into benzoyl-CoA as a central intermediate.

  • One of the O2-independent strategies for aromatic-ring cleavage is used by facultative anaerobic bacteria when they are growing phototrophically or during anaerobic respiration. In these circumstances, these bacteria reduce benzoyl-CoA by an ATP-driven benzoyl-CoA reductase that hydrolyses two molecules of ATP.

  • By contrast, during low-energy-yield anaerobic respiration or fermentation, strictly anaerobic bacteria use a different class of benzoyl-CoA reductase that is ATP independent. The low redox potential that is required for benzoyl-CoA reduction is probably achieved by a process called electron bifurcation. Electrons from two reduced ferredoxins are split via a flavin cofactor into low- and high-redox-potential electrons. Low-redox-potential electrons may reduce the aromatic ring, whereas high-redox-potential electrons may reduce NAD+.

Abstract

Aromatic compounds are both common growth substrates for microorganisms and prominent environmental pollutants. The crucial step in their degradation is overcoming the resonance energy that stabilizes the ring structure. The classical strategy for degradation comprises an attack by oxygenases that hydroxylate and finally cleave the ring with the help of activated molecular oxygen. Here, we describe three alternative strategies used by microorganisms to degrade aromatic compounds. All three of these methods involve the use of CoA thioesters and ring cleavage by hydrolysis. However, these strategies are based on different ring activation mechanisms that consist of either formation of a non-aromatic ring-epoxide under oxic conditions, or reduction of the aromatic ring under anoxic conditions using one of two completely different systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Environmental sources of aromatic compounds.
Figure 2: Peripheral (upper) pathways in the degradation of aromatic compounds.
Figure 3: The β-ketoadipate pathway and ring-cleaving dioxygenases.
Figure 4: Aerobic degradation of benzoyl-CoA and phenylacetyl-CoA.
Figure 5: Anaerobic degradation of benzoyl-CoA.
Figure 6: Anaerobic degradation of aromatic hydrocarbons.

Similar content being viewed by others

References

  1. Metzler, D. E. Biochemistry. The Chemical Reactions of Living Cells 2nd edn Vol. 2 (Academic, London, 2001). An excellent general textbook of biochemistry.

    Google Scholar 

  2. Kirk, T. K. & Farrell, R. L. Enzymatic “combustion”: the microbial degradation of lignin. Annu. Rev. Microbiol. 41, 465–505 (1987).

    Article  CAS  PubMed  Google Scholar 

  3. Bugg, T. D., Ahmad, M., Hardiman, E. M. & Singh, R. The emerging role for bacteria in lignin degradation and bio-product formation. Curr. Opin. Biotechnol. 22, 394–400 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Hayaishi, O. From oxygenase to sleep. J. Biol. Chem. 283, 19165–19175 (2008). Reflections from the scientist who discovered oxygenases.

    Article  CAS  PubMed  Google Scholar 

  5. Dagley, S., Evans, W. C. & Ribbons, D. W. New pathways in the oxidative metabolism of aromatic compounds by microorganisms. Nature 188, 560–566 (1960).

    Article  CAS  PubMed  Google Scholar 

  6. Dagley, S., Chapman, P. J., Gibson, D. T. & Wood, J. M. Degradation of benzene nucleus by bacteria. Nature 202, 775–778 (1964).

    Article  CAS  PubMed  Google Scholar 

  7. Ornston, L. N. & Stanier, R. Y. The conversion of catechol and protocatechuate to β-ketoadipate by Pseudomonas putida. J. Biol. Chem. 241, 3776–3786 (1966).

    Article  CAS  PubMed  Google Scholar 

  8. Dagley, S. Catabolism of aromatic compounds by micro-organisms. Adv. Microb. Physiol. 6, 1–46 (1971).

    Article  CAS  PubMed  Google Scholar 

  9. Stanier, R. Y. & Ornston, L. N. The β-ketoadipate pathway. Adv. Microb. Physiol. 9, 89–151 (1973). A classic article on degradation of aromatic compounds.

    Article  CAS  PubMed  Google Scholar 

  10. Harwood, C. S. & Parales, R. E. The β-ketoadipate pathway and the biology of self-identity. Annu. Rev. Microbiol. 50, 553–590 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Harayama, S., Kok, M. & Neidle, E. L. Functional and evolutionary relationships among diverse oxygenases. Ann. Rev. Microbiol. 46, 565–601 (1992).

    Article  CAS  Google Scholar 

  12. Que, L. & Ho, R. Y. N. Dioxygen activation by enzymes with mononuclear non-heme iron active sites. Chem. Rev. 96, 2607–2624 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Butler, C. S. & Mason, J. R. Structure–function analysis of the bacterial aromatic ring-hydroxylating dioxygenases. Adv. Microb. Physiol. 38, 47–84 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Gibson, D. T. & Parales, R. E. Aromatic hydrocarbon dioxygenases in environmental biotechnology. Curr. Opin. Biotechnol. 11, 236–243 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Leahy, J. G., Batchelor, P. J. & Morcomb, S. M. Evolution of the soluble diiron monooxygenases. FEMS Microbiol. Rev. 27, 449–479 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Vaillancourt, F. H., Bolin, J. T. & Eltis, L. D. The ins and outs of ring-cleaving dioxygenases. Crit. Rev. Biochem. Mol. Biol. 41, 241–267 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Lipscomb, J. D. Mechanism of extradiol aromatic ring-cleaving dioxygenases. Curr. Opin. Struct. Biol. 18, 644–649 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Berry, D. F., Francis, A. J. & Bollag, J. M. Microbial metabolism of homocyclic and heterocyclic aromatic compounds under anaerobic conditions. Microbiol. Rev. 51, 43–59 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Evans, W. C. & Fuchs, G. Anaerobic degradation of aromatic compounds. Annu. Rev. Microbiol. 42, 289–317 (1988).

    Article  CAS  PubMed  Google Scholar 

  20. Young, L. Y. & Häggblom, M. M. Biodegradation of toxic and environmental pollutants. Curr. Opin. Biotechnol. 2, 429–435 (1991).

    Article  CAS  PubMed  Google Scholar 

  21. Heider, J. & Fuchs, G. Anaerobic metabolism of aromatic compounds. Eur. J. Biochem. 243, 577–596 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Heider, J. & Fuchs, G. Microbial anaerobic aromatic metabolism. Anaerobe 3, 1–22 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Harwood, C., Burchhardt, G., Herrmann, H. & Fuchs, G. Anaerobic metabolism of aromatic compounds via the benzoyl-CoA pathway. FEMS Microbiol. Rev. 22, 439–458 (1999).

    Article  Google Scholar 

  24. Schink, B., Philipp, B. & Müller, J. Anaerobic degradation of phenolic compounds. Naturwissenschaften 87, 12–23 (2000). A review dealing with the pathways that differ from the anaerobic benzoyl-CoA pathway.

    Article  CAS  PubMed  Google Scholar 

  25. Widdel, F. & Rabus, R. Anaerobic biodegradation of saturated and aromatic hydrocarbons. Curr. Opin. Biotechnol. 12, 259–276 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Boll, M., Fuchs, G. & Heider, J. Anaerobic oxidation of aromatic compounds and hydrocarbons. Curr. Opin. Biol. Chem. 6, 604–611 (2002).

    Article  CAS  Google Scholar 

  27. Gibson, J. & Harwood, C. S. Metabolic diversity in aromatic compound utilization by anaerobic microbes. Annu. Rev. Microbiol. 56, 345–369 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Meckenstock, R. U., Safinowski, M. & Griebler, C. Anaerobic degradation of polycyclic aromatic hydrocarbons. FEMS Microbiol. Ecol. 49, 27–36 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Fuchs, G. Anaerobic metabolism of aromatic compounds. Ann. N. Y. Acad. Sci. 1125, 82–99 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Carmona, M. et al. Anaerobic catabolism of aromatic compounds: a genetic and genomic view. Microbiol. Mol. Biol. Rev. 73, 71–133 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Braun, K. & Gibson, D. T. Anaerobic degradation of 2-aminobenzoate (anthranilic acid) by denitrifying bacteria. Appl. Environ. Microbiol. 48, 102–107 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tschech, A. & Fuchs, G. Anaerobic degradation of phenol by pure cultures of newly isolated denitrifying pseudomonads. Arch. Microbiol. 148, 213–217 (1987).

    Article  CAS  PubMed  Google Scholar 

  33. Anders, J. H., Kaetzke, A., Kämpfer, P., Ludwig, W. & Fuchs, G. Taxonomic position of aromatic-degrading denitrifying pseudomonad strains K 172 and KB 740 and their description as new members of the genera Thauera, Thauera aromatica sp. nov., and Azoarcus, as Azoarcus evansii sp. nov., respectively, members of the beta subclass of Proteobacteria. Int. J. Syst. Bacteriol. 45, 327–333 (1995).

    Article  CAS  PubMed  Google Scholar 

  34. Rabus, R. et al. The genome sequence of an anaerobic aromatic-degrading denitrifying bacterium, strain EbN1. Arch. Microbiol. 183, 27–36 (2005). An exemplary annotation of a bacterial genome with reference to degradation of aromatic compounds.

    Article  CAS  PubMed  Google Scholar 

  35. Rather, L. J. et al. Structure and mechanism of the diiron benzoyl-coenzyme A epoxidase BoxB. J. Biol. Chem. 286, 29241–29248 (2011). A report detailing the crystal structure of the key benzoyl-CoA epoxidase and discussing a possible mechanism of action for this enzyme.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mohamed, M. E., Zaar, A., Ebenau-Jehle, C. & Fuchs, G. Reinvestigation of a new type of aerobic benzoate metabolism in the proteobacterium Azoarcus evansii. J. Bacteriol. 183, 1899–1908 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zaar, A., Eisenreich, W., Bacher, A. & Fuchs, G. A novel pathway of aerobic benzoate catabolism in the bacteria Azoarcus evansii and Bacillus stearothermophilus. J. Biol. Chem. 276, 24997–25004 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Gescher, J., Zaar, A., Mohamed, M., Schägger, H. & Fuchs, G. Genes coding for a new pathway of aerobic benzoate metabolism in Azoarcus evansii. J. Bacteriol. 184, 6301–6315 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zaar, A., Gescher, J., Eisenreich, W., Bacher, A. & Fuchs, G. New enzymes involved in aerobic benzoate metabolism in Azoarcus evansii. Mol. Microbiol. 54, 223–238 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Gescher, J., Eisenreich, W., Wörth, J., Bacher, A. & Fuchs, G. Aerobic benzoyl-CoA catabolic pathway in Azoarcus evansii: studies on the non-oxygenolytic ring cleavage enzyme. Mol. Microbiol. 56, 1586–1600 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Gescher, J. et al. Aerobic benzoyl-coenzyme A (CoA) catabolic pathway in Azoarcus evansii: conversion of ring cleavage product by 3,4-dehydroadipyl-CoA semialdehyde dehydrogenase. J. Bacteriol. 188, 2919–2927 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ismail, W. Benzoyl-coenzyme A thioesterase of Azoarcus evansii: properties and function. Arch. Microbiol. 190, 451–460 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Bains, J., Leon, R. & Boulanger, M. J. Structural and biophysical characterization of BoxC from Burkholderia xenovorans LB400: a novel ring-cleaving enzyme in the crotonase superfamily. J. Biol. Chem. 284, 16377–16385 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rather, L. J., Knapp, B., Haehnel, W. & Fuchs, G. Coenzyme A dependent aerobic metabolism of benzoate via epoxide formation. J. Biol. Chem. 285, 20615–20624 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rather, L. J., Bill, E., Ismail, W. & Fuchs, G. The reducing component BoxA of benzoyl-coenzyme A epoxidase from Azoarcus evansii is a [4Fe-4S] protein. Biochim. Biophys. Acta Jun 11 2011 (doi:10.1016/j.bbapap.2011.05.023).

    Article  CAS  Google Scholar 

  46. Denef, V. J. et al. Genetic and genomic insights into the role of benzoate-catabolic pathway redundancy in Burkholderia xenovorans LB400. Appl. Environ. Microbiol. 72, 585–595 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kishore, G., Sugumaran, M. & Vaidyanathan, C. S. Metabolism of DL-(±)-phenylalanine by Aspergillus niger. J. Bacteriol. 128, 182–191 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Martinez-Blanco, H., Reglero, A., Rodriguez-Aparicio, L. B. & Luengo, J. M. Purification and biochemical characterization of phenylacetyl-CoA ligase from Pseudomonas putida. A specific enzyme for the catabolism of phenylacetic acid. J. Biol. Chem. 265, 7084–7090 (1990).

    Article  CAS  PubMed  Google Scholar 

  49. Olivera, E. R. et al. Molecular characterization of the phenylacetic acid catabolic pathway in Pseudomonas putida U: the phenylacetyl-CoA catabolon. Proc. Natl Acad. Sci. USA 95, 6419–6424 (1998). A summary of the early information on the phenylacetyl-CoA oxidation pathway, mainly based on genetic evidence.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ferrández, A., Garcia, J. L. & Diaz, E. Transcriptional regulation of the divergent paa catabolic operons for phenylacetic acid degradation in Escherichia coli. J. Biol. Chem. 275, 12214–12222 (2000).

    Article  PubMed  Google Scholar 

  51. Luengo, J. M., Garcia, J. L. & Olivera, E. R. The phenylacetyl-CoA catabolon: a complex catabolic unit with broad biotechnological applications. Mol. Microbiol. 39, 1434–1442 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Mohamed, M. E. S., Ismail, W., Heider, J. & Fuchs, G. Aerobic metabolism of phenylacetic acids in Azoarcus evansii. Arch. Microbiol. 178, 180–192 (2002).

    Article  CAS  Google Scholar 

  53. Rost, R., Haas, S., Hammer, E., Herrmann, H. & Burchhardt, G. Molecular analysis of aerobic phenylacetate degradation in Azoarcus evansii. Mol. Genet. Genomics 267, 656–663 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. Ismail, W. et al. Functional genomics by NMR spectroscopy. Phenylacetate catabolism in Escherichia coli. Eur. J. Biochem. 270, 3047–3054 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Fernandez, C., Ferrandez, A., Minambres, B., Diaz, E. & Garcia. J. L. Genetic characterization of the phenylacetyl-coenzyme A oxygenase from the aerobic phenylacetic acid degradation pathway of Escherichia coli. Appl. Environ. Microbiol. 72, 7422–7426 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Teufel, R. et al. Bacterial phenylalanine and phenylacetate catabolic pathway revealed. Proc. Natl Acad. Sci. USA 107, 14390–14395 (2010). A study that identifies the individual intermediates and enzyme steps of phenylacetyl-CoA oxidation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Teufel, R. et al. Studies on the mechanism of ring-hydrolysis in phenylacetate degradation: a metabolic branching point. J. Biol. Chem. 286, 11021–11034 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Grishin, A. M. et al. Structural and functional studies of the Escherichia coli phenylacetyl-CoA monooxygenase complex. J. Biol. Chem. 286, 10735–10743 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Song, F. et al. Structure, function, and mechanism of the phenylacetate pathway hot dog-fold thioesterase PaaI. J. Biol. Chem. 281, 11028–11038 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Holden, H. M., Benning, M. M., Haller, T. & Gerlt, J. A. The crotonase superfamily: divergently related enzymes that catalyze different reactions involving acyl coenzyme A thioesters. Acc. Chem. Res. 34, 145–157 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. del Peso-Santos, T. et al. Coregulation by phenylacetyl-coenzyme A-responsive PaaX integrates control of the upper and lower pathways for catabolism of styrene by Pseudomonas sp. strain Y2. J. Bacteriol. 188, 4812–4821 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Cao, Y. et al. Crystallization and preliminary X-ray characterization of a PaaX-like protein from Sulfolobus solfataricus P2. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 65, 776–778 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Schühle, K., Jahn, M., Ghisla, S. & Fuchs, G. Two similar gene clusters coding for enzymes of a new type of aerobic 2-aminobenzoate (anthranilate) metabolism in the bacterium Azoarcus evansii. J. Bacteriol. 183, 5268–5278 (2001).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Buder, R. & Fuchs. G. 2-Aminobenzoyl CoA monooxygenase/ reductase, a novel type of flavoenzyme. Purification and some properties of the enzyme. Eur. J. Biochem. 185, 629–635 (1989).

    Article  CAS  PubMed  Google Scholar 

  65. Buder, R., Ziegler, K., Fuchs, G., Langkau, B. & Ghisla, S. 2-Aminobenzoyl-CoA monooxygenase/reductase, a novel type of flavoenzyme. Studies on the stoichiometry and the course of the reaction. Eur. J. Biochem. 185, 637–643 (1989).

    Article  CAS  PubMed  Google Scholar 

  66. Langkau, B., Ghisla, S., Buder, R., Ziegler, K. & Fuchs, G. 2-Aminobenzoyl-CoA monoxygenase/reductase, a novel type of flavoenzyme. Identification of the products. Eur. J. Biochem. 191, 365–371 (1990).

    Article  CAS  PubMed  Google Scholar 

  67. Langkau, B., Vock, P., Massey, V., Fuchs, G. & Ghisla, S. 2-Aminobenzoyl-CoA monooxygenase/reductase. Evidence for two distinct loci catalyzing substrate monooxygenation and hydrogenation. Eur. J. Biochem. 230, 676–685 (1995).

    Article  CAS  PubMed  Google Scholar 

  68. Hartmann, S. et al. Mechanistic studies with 2-aminobenzoyl-CoA monooxygenase/reductase. Proc. Natl Acad. Sci. USA 96, 7831–7836 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Torres, R. A. & Bruice, T. C. Theoretical investigation of the [1,2]-sigmatropic hydrogen migration in the mechanism of oxidation of 2-aminobenzoyl-CoA by 2-aminobenzoyl-CoA monooxygenase/reductase. Proc. Natl Acad. Sci. USA 96, 14748–14752 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ishiyama, D., Vujaklija, D. & Davies, J. Novel pathway of salicylate degradation by Streptomyces sp. strain WA46. Appl. Environ. Microbiol. 70, 1297–12306 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Birch, A. J. Reduction by dissolving metals. Part I. J. Chem. Soc. 1944, 430–436 (1944).

    Article  Google Scholar 

  72. Kung, J. W. et al. Reversible biological Birch reduction at an extremely low redox potential. J. Am. Chem. Soc. 132, 9850–9856 (2010). An investigation that determines the extremely low redox potential of enzymatic reduction of the key intermediate benzoyl-CoA.

    Article  CAS  PubMed  Google Scholar 

  73. Buckel, W. & Keese, R. One-electron redox reactions of CoASH esters in anaerobic bacteria—a mechanistic proposal. Angew. Chem. Int. Ed. Engl. 34, 1502–1506 (1995).

    Article  CAS  Google Scholar 

  74. Möbitz, H. & Boll, M. A Birch-like mechanism in enzymatic benzoyl-CoA reduction: a kinetic study of substrate analogues combined with an ab initio model. Biochemistry 41, 1752–1758 (2002).

    Article  PubMed  CAS  Google Scholar 

  75. Boll, M. et al. Non-aromatic products from anoxic conversion of benzoyl-CoA with benzoyl-CoA reductase and cyclohexa-1,5-diene-1-carbonyl-CoA hydratase. J. Biol. Chem. 275, 21889–21895 (2000).

    Article  CAS  PubMed  Google Scholar 

  76. Boll, M. Key enzymes in the anaerobic aromatic metabolism catalysing Birch-like reductions. Biochim. Biophys. Acta 1707, 34–50 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. Boll, M., Albracht, S. S. & Fuchs, G. Benzoyl-CoA reductase (dearomatizing), a key enzyme of anaerobic aromatic metabolism. A study of adenosinetriphosphatase activity, ATP stoichiometry of the reaction and EPR properties of the enzyme. Eur. J. Biochem. 244, 840–851 (1997).

    Article  CAS  PubMed  Google Scholar 

  78. Boll, M. & Fuchs, G. Benzoyl-coenzyme A reductase (dearomatizing), a key enzyme of anaerobic aromatic metabolism. ATP dependence of the reaction, purification and some properties of the enzyme from Thauera aromatica strain K172. Eur. J. Biochem. 234, 921–933 (1995). The first description of an ATP-dependent benzoyl-CoA reductase.

    Article  CAS  PubMed  Google Scholar 

  79. Unciuleac, M. & Boll, M. Mechanism of ATP-driven electron transfer catalyzed by the benzene ring-reducing enzyme benzoyl-CoA reductase. Proc. Natl Acad. Sci. USA 98, 13619–13624 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Breese, K., Boll, M., Alt-Mörbe, J., Schägger, H. & Fuchs, G. Genes coding for the benzoyl-CoA pathway of anaerobic aromatic metabolism in the bacterium Thauera aromatica. Eur. J. Biochem. 256, 148–154 (1998).

    Article  CAS  PubMed  Google Scholar 

  81. Egland, P. G., Pelletier, D. A., Dispensa, M., Gibson, J. & Harwood, C. S. A cluster of bacterial genes for anaerobic benzene ring biodegradation. Proc. Natl Acad. Sci. USA 94, 6484–6489 (1997). A report on the genes involved in anaerobic benzoate metabolism.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Laempe, D., Jahn, M. & Fuchs, G. 6-Hydroxycyclohex-1-ene-1-carbonyl-CoA dehydrogenase and 6-oxocyclohex-1-ene-1-carbonyl-CoA hydrolase, enzymes of the benzoyl-CoA pathway of anaerobic aromatic metabolism in the denitrifying bacterium Thauera aromatica. Eur. J. Biochem. 263, 420–429 (1999).

    Article  CAS  PubMed  Google Scholar 

  83. Laempe, D., Eisenreich, W., Bacher, A. & Fuchs, G. Cyclohexa-1,5-diene-1-carbonyl-CoA hydratase [corrected], an enzyme involved in anaerobic metabolism of benzoyl-CoA in the denitrifying bacterium Thauera aromatica. Eur. J. Biochem. 255, 618–627 (1998).

    Article  CAS  PubMed  Google Scholar 

  84. Boll, M. & Fuchs, G. Identification and characterization of the natural electron donor ferredoxin and of FAD as a possible prosthetic group of benzoyl-CoA reductase (dearomatizing), a key enzyme of anaerobic aromatic metabolism. Eur. J. Biochem. 251, 946–954 (1998).

    Article  CAS  PubMed  Google Scholar 

  85. Boll, M., Fuchs, G., Tilley, G., Armstrong, F. A. & Lowe, D. J. Unusual spectroscopic and electrochemical properties of the 2[4Fe-4S] ferredoxin of Thauera aromatica. Biochemistry 39, 4929–4938 (2000).

    Article  CAS  PubMed  Google Scholar 

  86. Boll, M., Fuchs, G., Meier, C., Trautwein, A. & Lowe, D. J. EPR and Mössbauer studies of benzoyl-CoA reductase. J. Biol. Chem. 275, 31857–31868 (2000).

    Article  CAS  PubMed  Google Scholar 

  87. Thiele, B., Rieder, O., Golding, B. T., Müller, M. & Boll, M. Mechanism of enzymatic Birch reduction: stereochemical course and exchange reactions of benzoyl-CoA reductase. J. Am. Chem. Soc. 130, 14050–14051 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. Peters, F., Rother, M. & Boll, M. Selenocysteine-containing proteins in anaerobic benzoate metabolism of Desulfococcus multivorans. J. Bacteriol. 186, 2156–2163 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Holmes, D. E., Risso, C., Smith, J. A. & Lovley, D. R. Anaerobic oxidation of benzene by the hyperthermophilic archaeon Ferroglobus placidus. Appl. Environm. Microbiol. 77, 5926–5933 (2011).

    Article  CAS  Google Scholar 

  90. Kung, J. W. et al. Identification and characterization of the tungsten-containing class of benzoyl-coenzyme A reductases. Proc. Natl Acad. Sci. USA 106, 17687–17692 (2009). The first description of an ATP-independent benzoyl-CoA reductase.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kuntze, K. et al. 6-Oxocyclohex-1-ene-1-carbonyl-coenzyme A hydrolases from obligately anaerobic bacteria: characterization and identification of its gene as a functional marker for aromatic compounds degrading anaerobes. Environ. Microbiol. 10, 1547–1556 (2008).

    Article  CAS  PubMed  Google Scholar 

  92. Peters, F., Shinoda, Y., McInerney, M. J. & Boll, M. Cyclohexa-1,5-diene-1-carbonyl-coenzyme A (CoA) hydratases of Geobacter metallireducens and Syntrophus aciditrophicus: evidence for a common benzoyl-CoA degradation pathway in facultative and strict anaerobes. J. Bacteriol. 189, 1055–1060 (2007).

    Article  CAS  PubMed  Google Scholar 

  93. Wischgoll, S. et al. Gene clusters involved in anaerobic benzoate degradation of Geobacter metallireducens. Mol. Microbiol. 58, 1238–1252 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. Löffler, C. et al. Occurrence, genes and expression of the W/Se-containing class II benzoyl-coenzyme A reductases in anaerobic bacteria. Environ. Microbiol. 13, 696–709 (2011).

    Article  PubMed  CAS  Google Scholar 

  95. Heintz, D. et al. Differential membrane proteome analysis reveals novel proteins involved in the degradation of aromatic compounds in Geobacter metallireducens. Mol. Cell. Proteomics 8, 2159–2169 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kaster, A. K., Moll, J., Parey, K. & Thauer, R. K. Coupling of ferredoxin and heterodisulfide reduction via electron bifurcation in hydrogenotrophic methanogenic archaea. Proc. Natl Acad. Sci. USA 108, 2981–2986 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Thauer, R. K., Kaster, A. K., Seedorf, H., Buckel, W. & Hedderich, R. Methanogenic archaea: ecologically relevant differences in energy conservation. Nature Rev. Microbiol. 6, 579–591 (2008).

    Article  CAS  Google Scholar 

  98. Wang, S., Huang, H., Moll, J. & Thauer, R. K. NADP+ reduction with reduced ferredoxin and NADP+ reduction with NADH are coupled via an electron-bifurcating enzyme complex in Clostridium kluyveri. J. Bacteriol. 192, 5115–5123 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Herrmann, G., Jayamani, E., Mai, G. & Buckel, W. Energy conservation via electron-transferring flavoprotein in anaerobic bacteria. J. Bacteriol. 190, 784–791 (2008).

    Article  CAS  PubMed  Google Scholar 

  100. Li, F. et al. Coupled ferredoxin and crotonyl coenzyme A (CoA) reduction with NADH catalyzed by the butyryl-CoA dehydrogenase/Etf complex from Clostridium kluyveri. J. Bacteriol. 190, 843–850 (2008).

    Article  CAS  PubMed  Google Scholar 

  101. Parales, R. E., Parales, J. V., Pelletier, D. A. & Ditty, J. L. Diversity of microbial toluene degradation pathways. Adv. Appl. Microbiol. 64, 1–73 (2008).

    Article  CAS  PubMed  Google Scholar 

  102. Heider, J. & Rabus, R. in Microbial Biodegradation: Genomics and Molecular Biology (ed. Díaz, E.) 25–54 (Caister Academic, Norfolk, 2008).

    Google Scholar 

  103. Heider, J. Adding handles to unhandy substrates: anaerobic hydrocarbon activation mechanisms. Curr. Opin. Chem. Biol. 11, 188–194 (2007).

    Article  CAS  PubMed  Google Scholar 

  104. Evans, P. J., Ling, W., Goldschmidt, B., Ritter, E. R. & Young, L. Y. Metabolites formed during anaerobic transformation of toluene and o-xylene and their proposed relationship to the initial steps of toluene mineralization. Appl. Environ. Microbiol. 58, 496–501 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Beller, H. R., Reinhard, M. & Grbić-Galić, D. Metabolic by-products of anaerobic toluene degradation by sulfate-reducing enrichment cultures. Appl. Environ. Microbiol. 58, 3192–3195 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Seyfried, B., Glod, G., Schocher, R., Tschech, A. & Zeyer, J. Initial reactions in the anaerobic oxidation of toluene and m-xylene by denitrifying bacteria. Appl. Environ. Microbiol. 60, 4047–4052 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Migaud, M. E., Chee-Sanford, J. C., Tiedje, J. M. & Frost, J. W. Benzylfumaric, benzylmaleic, and Z- and E-phenylitaconic acids: synthesis, characterization, and correlation with a metabolite generated by Azoarcus tolulyticus Tol-4 during anaerobic toluene degradation. Appl. Environ. Microbiol. 62, 974–978 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Biegert, T., Fuchs, G. & Heider, J. Evidence that anaerobic oxidation of toluene in the denitrifying bacterium Thauera aromatica is initiated by formation of benzylsuccinate from toluene and fumarate, Eur. J. Biochem. 238, 661–668 (1996). A classic paper demonstrating that the addition of fumarate to a hydrocarbon constitutes the initial attack not only on toluene, but also on various other hydrocarbon compounds.

    Article  CAS  PubMed  Google Scholar 

  109. Beller, H. R. & Spormann, A. M. Analysis of the novel benzylsuccinate synthase reaction for anaerobic toluene activation based on structural studies of the product. J. Bacteriol. 180, 5454–5457 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Leutwein, C. & Heider, J. Anaerobic toluene-catabolic pathway in denitrifying Thauera aromatica: activation and β-oxidation of the first intermediate, (R)-(+)-benzylsuccinate. Microbiology 145, 3265–3271 (1999).

    Article  CAS  PubMed  Google Scholar 

  111. Leuthner, B. et al. Biochemical and genetic characterisation of benzylsuccinate synthase from Thauera aromatica: a new glycyl-radical enzyme catalysing the first step in anaerobic toluene metabolism. Mol. Microbiol. 28, 615–628 (1998).

    Article  CAS  PubMed  Google Scholar 

  112. Leuthner, B. & Heider, J. Anaerobic toluene catabolism of Thauera aromatica: a toluene-induced operon codes for the enzymes of β-oxidation of the intermediate benzylsuccinate. J. Bacteriol. 182, 272–277 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Hermuth, K., Leuthner, B. & Heider, J. Operon structure and expression of the genes for benzylsuccinate synthase in Thauera aromatica strain K172. Arch. Microbiol. 177, 132–138 (2002).

    Article  CAS  PubMed  Google Scholar 

  114. Kühner, S. et al. Substrate-dependent regulation of anaerobic degradation pathways for toluene and ethylbenzene in a denitrifying bacterium, strain EbN1. J. Bacteriol. 187, 1493–1503 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Heider, J., Spormann, A. M., Beller, H. R. & Widdel, F. Anaerobic bacterial metabolism of hydrocarbons. FEMS Microbiol. Rev. 22, 459–473 (1998). A summary of the early findings on anaerobic degradation of hydrocarbon compounds.

    Article  CAS  Google Scholar 

  116. Leutwein, C. & Heider, J. Succinyl-CoA: (R)-benzylsuccinate CoA-transferase: an enzyme of the anaerobic toluene catabolic pathway in denitrifying bacteria. J. Bacteriol. 183, 4288–4295 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Grundmann, O. et al. Genes encoding a tentative enzyme for anaerobic activation of n-alkanes in the denitrifying bacterium, strain HxN1. Environ. Microbiol. 10, 376–385 (2008).

    Article  CAS  PubMed  Google Scholar 

  118. Rabus, R. & Heider, J. Initial reactions of anaerobic metabolism of alkylbenzenes in denitrifying and sulfate-reducing bacteria. Arch. Microbiol. 170, 377–384 (1998).

    Article  CAS  Google Scholar 

  119. Ball, H. A., Johnson, H. A., Reinhard, M. & Spormann, A. M. Initial reactions in anaerobic ethylbenzene oxidation by a denitrifying bacterium, strain EB1. J. Bacteriol. 178, 5755–5761 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Kniemeyer, O. & Heider, J. Ethylbenzene dehydrogenase, a novel hydrocarbon-oxidising molybdenum/iron-sulfur/heme enzyme. J. Biol. Chem. 276, 21381–21386 (2001).

    Article  CAS  PubMed  Google Scholar 

  121. Johnson, H. A., Pelletier, D. A. & Spormann, A. M. Isolation and characterization of anaerobic ethylbenzene dehydrogenase, a novel Mo-Fe-S. enzyme. J. Bacteriol. 183, 4536–4542 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Kloer, D. P., Hagel, C., Heider, J. & Schulz, G. E. Crystal Structure of ethylbenzene dehydrogenase from Aromatoleum aromaticum. Structure 14, 1377–1388 (2006). The elucidation of the structure of ethylbenzene dehydrogenase.

    Article  CAS  PubMed  Google Scholar 

  123. Szaleniec, M. et al. Kinetics and mechanism of oxygen-independent hydrocarbon-hydroxylation by ethylbenzene dehydrogenase. Biochemistry 46, 7637–7646 (2007).

    Article  CAS  PubMed  Google Scholar 

  124. Szaleniec, M., Borowski, T., Schühle, K., Witko, M. & Heider, J. Ab inito modelling of ethylbenzene dehydrogenase reaction mechanism. J. Am. Chem. Soc. 132, 6014–6024 (2010).

    Article  CAS  PubMed  Google Scholar 

  125. Höffken, H. W. et al. Crystal structure and enzyme kinetics of the (S)-specific 1-phenylethanol dehydrogenase of the denitrifying bacterium strain EbN1. Biochemistry 45, 82–93 (2006).

    Article  PubMed  CAS  Google Scholar 

  126. Jobst, B., Schühle, K., Linne, U. & Heider, J. ATP-dependent carboxylation of acetophenone by a novel type of carboxylase. J. Bacteriol. 192, 1387–1394 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Zhang, X. & Young, L. Y. Carboxylation as an initial reaction in the anaerobic metabolism of naphthalene and phenanthrene by sulfidogenic consortia. Appl. Environ. Microbiol. 63, 4759–4764 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Kunapuli, U, Griebler, C., Beller, H. R. & Meckenstock, R. U. Identification of intermediates formed during anaerobic benzene degradation by an iron-reducing enrichment culture. Environ. Microbiol. 10, 1703–1710 (2008).

    Article  CAS  PubMed  Google Scholar 

  129. Abu Laban, N., Selesi, D., Rattei, T., Tischler, P. & Meckenstock, R. U. Identification of enzymes involved in anaerobic benzene degradation by a strictly anaerobic iron-reducing enrichment culture. Environ. Microbiol. 12, 2783–2796 (2010).

    CAS  PubMed  Google Scholar 

  130. Bergmann, F. D., Selesi, D. & Meckenstock, R. U. Identification of new enzymes potentially involved in anaerobic naphthalene degradation by the sulfate-reducing enrichment culture N47. Arch. Microbiol. 193, 241–250 (2011).

    Article  CAS  PubMed  Google Scholar 

  131. Schühle, K. & Fuchs, G. Phenylphosphate carboxylase: a new C-C lyase involved in anaerobic phenol metabolism in Thauera aromatica. J. Bacteriol. 186, 4556–4567 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Huang, J., He, Z. & Wiegel, J. Cloning, characterization, and expression of a novel gene encoding a reversible 4-hydroxybenzoate decarboxylase from Clostridium hydroxybenzoicum. J. Bacteriol. 181, 5119–5122 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Gerischer, U. Specific and global regulators of genes associated with the degradation of aromatic compounds in bacteria. J. Mol. Microbiol. Biotechnol. 4, 111–121 (2002).

    CAS  PubMed  Google Scholar 

  134. Carmona, M., Prieto, M. A., Galán, B., García, J. L. & Díaz, E. in Microbial Biodegradation (ed. Díaz, E.) 99–143 (Caister Academic, Norfolk, 2008).

    Google Scholar 

  135. Durante-Rodríguez, G. et al. Biochemical characterization of the transcriptional regulator BzdR from Azoarcus sp. CIB. J. Biol. Chem. 285, 35694–35705 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Dispensa, M. et al. Anaerobic growth of Rhodopseudomonas palustris on 4-hydroxybenzoate is dependent on AadR, a member of the cyclic AMP receptor protein family of transcriptional regulators. J. Bacteriol. 174, 5803–5813 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Egland, P. G. & Harwood, C. S. BadR, a new MarR family member, regulates anaerobic benzoate degradation by Rhodopseudomonas palustris in concert with AadR, an FNR family member. J. Bacteriol. 181, 2102–2109 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Juárez, J. F. et al. Identification of the Geobacter metallireducens bamVW two-component system, involved in transcriptional regulation of aromatic degradation. Appl. Environ. Microbiol. 76, 383–385 (2010).

    Article  PubMed  CAS  Google Scholar 

  139. Lau, P. C. et al. A bacterial basic region leucine zipper histidine kinase regulating toluene degradation. Proc. Natl Acad. Sci. USA 94, 1453–1458 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Leuthner, B. & Heider, J. A two-component system involved in regulation of anaerobic toluene metabolism in Thauera aromatica. FEMS Microbiol. Lett. 166, 35–41 (1998).

    Article  CAS  PubMed  Google Scholar 

  141. Shingler, V., Bartilson, M. & Moore, T. Cloning and nucleotide sequence of the gene encoding the positive regulator (DmpR) of the phenol catabolic pathway encoded by pVI150 and identification of DmpR as a member of the NtrC family of transcriptional activators. J. Bacteriol. 175, 1596–1604 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Breinig, S., Schiltz, E. & Fuchs, G. Genes involved in anaerobic metabolism of phenol in the bacterium Thauera aromatica. J. Bacteriol. 182, 5849–5863 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Prieto, M. A. et al. Aromatic metabolism versus carbon availability: the regulatory network that controls catabolism of less-preferred carbon sources in Escherichia coli. FEMS Microbiol Rev. 28, 503–518 (2004).

    Article  CAS  PubMed  Google Scholar 

  144. Kurbatov, L., Albrecht, D., Herrmann, H. & Petruschka, L. Analysis of the proteome of Pseudomonas putida KT2440 grown on different sources of carbon and energy. Environ. Microbiol. 8, 466–478 (2006).

    Article  CAS  PubMed  Google Scholar 

  145. Petruschka, L., Burchhardt, G., Müller, C., Weihe, C. & Herrmann, H. The cyo operon of Pseudomonas putida is involved in carbon catabolite repression of phenol degradation. Mol. Genet. Genomics 266, 199–206 (2001).

    Article  CAS  PubMed  Google Scholar 

  146. Barragán, M. J. L. et al. The bzd gene cluster, coding for anaerobic benzoate catabolism, in Azoarcus sp. strain CIB. J. Bacteriol. 186, 5762–5774 (2004).

    Article  PubMed Central  CAS  Google Scholar 

  147. Wöhlbrand, L. et al. Functional proteomic view of metabolic regulation in “Aromatoleum aromaticum” strain EbN1. Proteomics 7, 2222–2239 (2007).

    Article  PubMed  CAS  Google Scholar 

  148. Pelletier, D. A. & Harwood, C. S. 2-Hydroxycyclohexanecarboxyl coenzyme A dehydrogenase, an enzyme characteristic of the anaerobic benzoate degradation pathway used by Rhodopseudomonas palustris. J. Bacteriol. 182, 2753–2760 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the funding of their work by the Deutsche Forschungsgemeinschaft and the contributions of numerous co-workers over many years.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Fuchs.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Glossary

Humus

Any organic matter in soil (particularly decayed lignin) that has reached a point of stability such that it will break down no further and might, if conditions do not change, essentially remain as it is for a long time.

Mesomeric structures

Two or more structures that can be assigned to a single molecule, neither of which is capable of describing all the known properties of the compound. The actual structure is considered to be a resonance hybrid, or an intermediate of these structures, and these structures are therefore also known as resonating structures.

π bond

A chemical bond that results from the overlap of atomic p orbitals that are in contact through two areas of overlap. π bonds are more diffuse than σ bonds. Molecular fragments joined by a π bond cannot rotate around that bond without breaking it.

p orbitals

Dumbbell-shaped regions describing where an electron can be found, within a certain degree of probability.

'Triplet' state

The ground state of the oxygen molecule. The electron configuration of O2 has two unpaired electrons occupying two degenerate molecular orbitals with four different spin states, of which the triplet states are energetically more favourable. This unusual electron configuration prevents molecular oxygen from reacting directly with many other molecules.

Birch reduction

A widely used tool in synthetic organic chemistry, for the de-aromatization of aromatic rings by reduction, as first reported in 1944 by Arthur Birch. It proceeds via alternating electron transfer and protonation steps, and it usually forms cyclohexa-1,4-dienes without further reduction.

Electron bifurcation

An enzymatic process in which a thermodynamically unfavourable redox reaction is driven by a thermodynamically favoured one.

Catabolite repression

A control system that allows bacteria to adapt quickly to use a preferred (that is, able to be metabolized rapidly) carbon and energy source first. This is usually achieved through inhibition of the synthesis of enzymes involved in catabolism of carbon sources other than the preferred one.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fuchs, G., Boll, M. & Heider, J. Microbial degradation of aromatic compounds — from one strategy to four. Nat Rev Microbiol 9, 803–816 (2011). https://doi.org/10.1038/nrmicro2652

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2652

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology